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This thesis considers the problem of providing attitude

control for a spacecraft engaged in an extended mission. As a

basis for the choice of a suitable attitude control system the

following requirements are applied.

Maximum reliability

Minimum ejection of mass

Minimum average power

Minimum system weight

Minimum peak power

An interplanetary mission of 400 days duration is adopt-

ed as a general guide for the problem, but most of the equations

and comparisons are presented in parametric form. Extended

missions imply that a momentum exchange type attitude control

system be used to minimize ejection of fuel mass, and the thesis

primarily considers only systems of this type. The thesis derives

the equations of motion for a spacecraft equipped with eighteen

different control systems. The control system chosen to best

•satisfy the five design requirements is a system consisting of

four gyro-type controllers arranged in two pairs with each pair

operating back-to-back to minimize control cross coupling torques.

One pair of controllers provide roll torques, and all four controllers

i'
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contribute yaw torques.

The stability and control analysis considers operation

of the spacecraft in three modes.

Zero Input Mode
Rate Control Mode

Position Control Mode

Each of the modes are evaluated for roll motion by assuming

negligible interaxial coupling, and the analysis includes opera-

tion of the controller gimbal angles to large angles.

Thesis Supervisor: Wallace E. Vander Velde

Title: Associate Professor of
Aeronautics and Astronautics
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CHAPTER 6

CIX)SING THE ATTITUDE CONTROL LOOP

6. 1 Introduction

Previous chapters have defined the physical character-

istics of the spacecraft, have chosen the four gyro (12-34-1234)

system as being the most attractive control system, and have

defined probable disturbances on the spacecraft. Before the

mathematical models representing the spacecraft and control

system can be combined into a single loop it is necessary to

specify an attitude sen._or and som_e type of torque motor which

will receive signal information from the sensor and provide the

proper angular rates and positions to the spin axes of the four

controllers. The sequence of this chapter follows an order that

first determines the dynamics of the individual controllers by

methods similar to those of Chapter 2 which considered the com-

plete spacecraft. Next, the motors and drive systems which

drive the controllers are defined. Then, the sensor and related

amplifiers are assumed together with the provision for tandem

compensation, if required. Finally, all of the above components

are combined into a single loop.

6.2 Response of the Controllers to Moments Applied by

the Roll and Pitch Torque Generators

In a manner parallel to that of Section 2.3 the funda-

mental equation of motion of a controller consisting of a gyro

case, a gimbal, and a rotor is

d___ = _ Mcas _I I
(Eq 6.2. 1)

Since it is proposed to derive roll and pitch moments from the
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control system by torquing the controllers about their vertical

axis (7 axis), it is convenient to sum torques in the coordinate

frame of the case (gu frame). Accordingly,

(Eq 6.2.2)

where H = H + H + H
r g c

From Appendix D, Equation D. 3.5,

Wl, GU

m

PCY + qS_

-PSY + qCY

r +-y

(Eq 6.2.3)

The approximation made in Section 2.6 is that

Hr_j GIM = JP _
(Eq 6.2.4)

Now,

Define

in the gu frame

m

0

Jp_ Ca

J p_ S_

(Eq 6.2.5)

J as the combined moment of inertia of the case,
cgr
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gimbal and rotor.

J = J +J +J
cgr c g r

Combining the last two equations gives

(Eq 6.2. 6)

H_GU

0

@

J p_ Sa + Jcgr _

_ _1

(Eq 6.2. 7)

Differentiating with respect to time where it is assumed that

angular momentum about the spin axis, Jpo p , is constant gives

H_GU

0 ]
f
i

+JpBCOd+ Jcgr _

(Eq 6.2. 8)

Then substituting the appropriate values into Eq 6.2. 2 gives for

the Number 1 Controller the following.

V"
M =

case 11 GU

- (R + "_)Jp_ Ca _-pS? + qC_)(Jp/_ Sa+ Jcgr

(jp _ )(pC_' + qS _/) }S_+ Jcgr _

+Jcgr _+- (_ +pC_+qS_) J _Ca' p

(Eq 6.2. 9)

5_)
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The X and T components of the torques in the last equation are

normal to the single degree of freedom of the case, and there-

fore are transmitted through the bearing to the vehicle. The Z

component is aligned with the bearing axis, and the rotation of
the case must be controlled by a torque generator about the 7

axis The single Z component can be written as

M7 casel ='Jcgr 7 + Jp _ + pC7 + qS7 C_ (Eq 6.2. I0)

M 7 casel consists of a torque generated part, a load, and a

viscous friction. Applying these to equation 6. 2. 10 gives for

each of the controllers the following.

d
Controller 1 Let F 1 = Jcgr d-_ + C

MTG1 + ML1 = F1 _1 + JPl,f_I (_1 + PC?I + qS71)C_l

(Eq 6. 2. ii)

Controller 2 (72 = 71 + 180 ° )

6

MTG2 + ML2 = F2 _2 + Jp2/32 (_2 - PC72 - qS72)Cc_2

(Eq 6. 2.12)

Controller 3 (73 = 71 - 90 °)

MTG 3 + ML3 = F3 _3 + Jp3f_3 (_3 + PS73 - qC73)Ca3

(Eq 6. 2. 13)
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Controller 4 (_4 = _1 + 900)

MTG4 + ML4 = F4 _'4 + Jp4fl4 (_4 " PSi4 +'qC_/4)C_4

(Eq 6.2.14)

Combining Controllers 1 and 2 in accordance with the logic that

_2 = - _'1 and al = _2 ' and making the further stipulations

that

ML2 = 0

_]_ _ _ ....

--Li .... I'(JZ

= :P2

(Eq 6. 2. 15)

F 1 = F 2

which implies that the two controllers are geared together gives

MTG1 - 2J _p;"_, C
_1 = 2F p _ 1 (Eq 6. 2. 16)

1

The assumption that al = a2 is not exact because the _I and a 2

gimbal axes cannot be easily geared together, but if the variables

are enclosed in an error position control loop the assumption is

believed valid. Note that the gearing of controllers 1 and 2 com-

pletely eliminates the cross coupling effects of q and :, and

leaves only the primary attitude rate variable, p, of the loop.

This is an important advantage of a system using two controllers

operating back-to-back.
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In arriving at the result of equation 6. 2. 16 it must

not be overlooked that an important assumption is that the angles

_1 and a 2 are maintained approximately equal. This assumption

gives the two-degree-of-freedom controllers the characteristics

of a single-degree-of-freedom controller in that the _ axis is

approximately rigidly restrained unless all four of the controllers

move in the same direction as a unit. In principle this may be

accomplished by wiring the torque generators controlling the

axis in parallel and requiring the torque generators to have a

high back emf.

Combining controllers 3 and 4 under the c0_iditi0ns that

the two are geared together and driven by controller 3 gives

for similar assumptions to equation 6. 2. 15 that

D

_3 MTG3 + 2J _qC73Ca= P' (Eq 6. 2.17)
2F 3

Note that in this equation for pitch control _ha_ the cross coupling

effects of r011 and yaw do not appear in the equation.

6.3 Response of the Controllers to Moments Applied by

the Yaw Torque Generators

Following the procedures of the previous section

dtJl I
(Eq 6. 3. 1)

Then it may be written thai

where H = H + H
r g
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Now from Appendix D the angular velocity is

WI, GIM

-pC_/ + qS_ +

(-pS_ + qC?)C_ + (r + _)Sa

(pS_ - qC_)S_ + (r + _)Ca

(Eq 6. 3.3)

Using the approximation of equation 6. 2.4 one would first

gJ vanishes; however, such is not the caseguess that H r GIM

and we must use the following from Appendix E

HJGIM

Ij "°-

°0
(Eq 6.3.4)

This step can be justified by considering the complete equations

in Appendix E.

_Mgim i] GIM

OQ

J a - (pS_ - qCT) S_ * (r + _)C_ J /_
rg p

(Eq 6. 3.5)

The Y component vanishes only for the assumptions made herein,

which means there are no large torques transmitted about the

spin axis of the rotor. Here we are interested only in the X

component since the Z component will be transferred through

the gimbal to the case where a component of it will appear at the

"y axis. Note that the cosine _ component can be identified in
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the corresponding portion of equation 6. 2.9.

Unfortunately, there does not appear to be a simple

method of mechanically connecting the gimbals of the four con-
trollers so that each of these angles are exactly the same.

Therefore, each of the gimbals must be handled separately.

These may be written as follows

d
Controller 1 Let G1 = Jrg'_ + C

• MTG 1 + Jp/_ (PSTl - qCTl)S_l + (r + _l)C_l

_1 = G 1

(Eq 6. 3. 6)

Controller 2

MTG 2 + Jp_ (PS_l+ qCTI)S_ 2 ÷ (r-_I)C_ 2

_2 = G 2

(Eq 6. 3. 7)

Controller 3

MTG 3 "_ Jp_ (Pc_/3 - qS_,3)S_ _

G 3

+ (r + _3 ) C_3

(Eq 6. 3. 8)

Controller 4

MTG 4 ÷Jp/3 (-pC-Y3 - qs_/3)S_ 4

G 4

b

÷ (r - ?3 ) C_4

(Eq 6. 3. 9)
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In the above four equation it is assumed that 72 = -71 , 74 = -73

and that Jp _ is held constant.

If it is assumed momentarily that the a gimbal axes

can be mechanically geared together then one may sum the yaw

moments of the four controllers. Since the angular momentum

of each controller is identical a summation of yaw moments can

be accomplished by first finding the average gimbal rate by sum-

ming the four gimbal rates. This gives the following equation.

. 2MTG + Jp_[(pS71 -qS_, 3) S_ + 2r C_]
= 2G {Eq 6. 3.10)

In this expression the moment applied by the torque generator,

MTG , is applied to each of the four gimbal axes. Note that

unlike the previous equations for _1 and _3 the cross- coupling

rates p and q do not vanish although they are multiplied by the

product of two angles which may remain small. However, the

large cosine components of the cross-coupling rates do drop

from the equation as do the terms in _I and

It is proposed to gear the _ gimbals together electrically

by finding the average girnbal angle and comparing this with the

angle of each girnbal separately in an error feedback loop. The

equations for this operation are contained in the next section.
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6. 4 Torque Generator

The control power requirements for the gyro controllers

are insignificant compared to the power required to drive the

rotors at operating speed as will be shown, and since the peak

torque requirements are small, either a direct current motor

or a two phase alternating current motor is applicable. The

ideal torque-speed characteristics of both types are the same

to a first approximation.

JM _" + B0 ÷ M L = K T V M (Eq. 6.4. i)

where 0

JM

B

M L

K T

V M

= motor position angle

= motor moment of inertia

= viscous friction constant

= load torque

= torque constant

= input control voltage

The motor is geared to the controller with a gear

ratio p > 1; therefore, the torque applied to the controller

gimbal is

MTG = p M L (Eq. 6. 4. 2)

The angular relation between the motor position angle

and gimbal position angle is

for yaw control

for roll and pitch control

This gives for yaw control

2_._Bp2MTG = KTP V M- jMp _)

(Eq. 6. 4. 3)

(Eq. 6. 4. 4)
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and for roll and pitch control

MTG = KTP VM- (JM p2 _÷ B p2 _) (Eq. 6.4. 5)

Combining equations 6.2.16 and 6.4.5 gives for roll control

K wpv M - 2 JpBpCs' ICa

_'1 = FI_ (Eq. 6.4.6)

where

Fl_,--(2Jcgr÷JMp2) d +(2C +Bp 2)

Likewise for pitch control

KTPV M t 2 Jp_qC_ 3

"_3 - F33 '
(Eq. 6.4. 7)

For yaw control the four controllers give separately

the following relations.

Let Gla=(Jrg÷JMp2_t ÷(C ÷Bp 2)

Gla

(Eq. 6.4.8)

KTP VM÷ Jp; [(PSq'I ÷ qCv1)Sa 2 ÷ (r-_l)C_2]

42 - G2 _

(Eq. 6.4.9)
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a 3 G3a

(Eq. 6.4. i0)

KTPV M ÷ Jp ; [(- P C"Y3 - q S"Y3)Sa'4"t" _ - '_'bCa'41

G4 a

(Eq. 6.4. 11)

In the above equations subscripts have been omitted, but each of

the equations requires its own characteristic parameters.

Since all controllers are slaved to the position angle of

the average' controller, the relation for the motor voltage of a

typical controller is as follows.

where VMZ -- error voltage and K 0 -- feedback constant.

Substituting equation 6.4. 12 into the above four equations gives

the following when written in terms of position angles.

Controller 1

K T P VMZ

--_-t_-_ 'b K 0 P

(Eq. 6.4. 13)

Controller 2

K T PVMz ÷ K e P aav e
_2 B

,.Jp;[(p_.,_,.q_',O_o,"(r";_)':o,]
_ (°_,)*,,e.

(Eq. 6.4. 14)
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Controller 3

KTP VMZ ÷K0 P _ave ÷Jp _[_ C,_qS_'_S_3÷(r÷_C_3]

(Eq. 6.4. 15)

Controller 4

KTPVMz
a4 -

÷ K0 P aave÷ Jp _-P C'Y3- q S'Y3>a4_'(r- ;_Ca4 ]

(Eq. $. 4. 16}

If we assume that the gimbal angles are held approximately

equal such that Ca 1 = Ca 2 = Ca 3 = Ca4, then the operation of

finding the control moments contributed by the four controllers

can be accomplished by first finding the average value of the

gimbal rates by combining the last four equations. This gives

for the average gimbal rate the following

= 2KTP VMZ +Jp;[_S_/l-qS_/_Sa+2 r Ca ]

2G

Where G =(Jrg÷JMp2)?t ÷ _ +Bp 2)

(Eq. 6.4. 17)
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6. 5 Attitude Sensors

The primary source of guidance, navigation, and attitude

information for a spacecraft is from external sightings. As was

shown in Chapter 4 the ambient fields around a spacecraft are

too feeble to drive a practical sensor, and this implies that some

type of star tracker must be provided if the spacecraft is to be

self sufficient. A control system can control the attitude of a

spacecraft only to the precision provided by the attitude sensor,

and the design of a highly linear sensor is a problem within it-

self. As done by other investigations of hardware for applying

torques to a spacecraft, this thesis assumes a linear sensor

for each of the three attitude reference axes of the spacecraft.

Accordingly the following equation is assumed to represent

the sensor.

K K 0 0
SX ex

0 K K 0
sy ey

0 0 K K
sz ez

r

_r-_

m _v

Vcx[
I
I

Vcy[

V 1
cz I

(Eq 6. 5. 1)

K = sensitivity of sensors

K = sensitivity of error amplifier
e

_r = reference angle

= vehicle attitude angle

V = voltage signal to tandem compensation
C

Any practical sensor has linear characteristics over

only a small range, and the effects of saturation will be consid-

ered in a later section concerning the position control mode.
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6. 6 Tandem Compensation

To accommodate the provision for shaping the error

signal before it is fed to the control system torque generators,

a transfer function which is presently undefined is inserted into

each control loop.

C X

0

0

V M

The following equation applies.

0 0

Cy 0

0 C Z

VCX

VCZ

VCZ

D

_'MX I

_MYI

_MZI

(Eq. 6. 6. 1)

V c = voltage signal to tandem compensation

C = transfer function of compensation

= voltage signal to torque generators

It is not anticipated that any tandem compensation will

be required in the examples of this thesis. In an actual problem

certain regions of the s-plane may be denied to the control sys-

tem designer because of unstable modes of the airframe, etc. ,

and for this reason space in the equations has been provided

for tandem compensation.
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For convenience we write equation 6.8. 1 in shorthand notation
as follows.

M(12-34- 12341 A

@r -@

= 2H[A 1 0r-0

Sr - $

P

+ 4H2 [B] q

r

(Eq 6.8.2)

where [A] and [B] arethe indicated matrices and (aij) and

(bij) are typical elements of these matrices.

To obtain the equation for the complete closed loop

system we substitute equations 6.8.2 and 2.4.5 into equation

2.3.3 which gives the following.

" 2 d d 2 2 d

- 2 Ha23 |L -"=a"=J t J
l 2 d h E 2 d _ _ d 2 2 _tId

-2Ha33 Jl

(I z - Iy) qr

+ (I x - I z)pr

(Iy - I x) qp
w

E Mex I EMvM_ - "
- - 2HIAl

A A _

0

¢

.J

(Eq 6.8.3)
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Equation 6.8.2 represents the complete loop of the
attitude control system, and as can be seen there is non-linear

interaxis coupling between the three loops as well as non-linear

terms arising from the Euler inertia-cross coupling. If it is

assumed that compensation is applied to the loops as set forth

in section; 3.6, and also compensation for the inertia-cross

coupling terms, the following expression is found for the roll
attitude angle.

d_ _ 2Hal _b= M - 2Ha _rIxdt2 +4H2blldt 1 x 11 (Eq 6.8.4)

Similar expressions can be written for 0 and _.

If the angular motions of the a axes of the controllers

are restricted to small angles then the following equations apply.

Ix FtiT_dt _ + (2 HCT 1)'-_t + 2 HCT1K¢ = F1TMx + 2 HCT1Kx_br

(Eq 6.8.5)

_2 dOI F d20 + (2 HC73,-- _ + 2 HCT3
Y 3Tdt2 Ky0 = F3T My + 2 HCT3%0 r

(Eq 6.8.6)

z dt2
+ (2 HCa)2-_ddt + 4HCaKz¢ = G_ M z + 4 HCa Kz_ r

(Eq 6.8.7)
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= 2, d
where F1. Y (2Jcgr + JM p Pclt + (2C + Bp2]"

F3. Y (2Jcgr +JMp2) d + (2C + Bp2)

d + (C + B p 2)
G_ = (Jgr + JMp2)-'_-

the constants for the different axes may not be equal.

Block diagram representation for the above equations

are contained in Figure 6.8. 1 and Figure 6.8.2. Figure 6.8. 1

contains the roll and pitch channels whereas the yaw channel

is shown in Figure 6.8.2 in two parts. Part (a) shows the four

individual controllers driven by the same error voltage. To

keep these controllers to the same angle their output angles are

averaged and then compared with the actual output gimbal angle.

The error is then fed back to the gimbal torque motor. Part

(b) of Figure 6.8.2 is the result of ideal controllers and repre-

sents equation 6.8.7.
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Mext I

i dt I_

FEEDB_

aAV E .÷

PART (o) INDIVIDUAL CONTROLLERS AND AVERAGING CIRCUIT SHOWN

Mext

;- ÷

Irdt I"
_-- i --_-. HH I dt I--

i G J.y !

PART (b) SIMPLIFIED REPRESENTATION OF EQUATION 6.8.7

Figure 6.8.2 Block Diagram Representation of the Position

Control Yaw Equation for Uncoupled Motion.
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6_9 Rate Control Equations

The purpose of the rate control is to provide the

astronaut with a means of slewing the vehicle at a particular

attitude rate. Since the position of the gimbal angles are

directly related to the amount of control system angular mom-

entum transferred to the vehicle, the gimbal angles represent

attitude rates. Therefore the rate control is essentially an

error feedback control loop to control the gimbal angle, and

the block diagram of the roll channel is shown in Figure 6.9. 1.

During this operation the error signals from the vehicle attitude

sensors are open circuited.

During the rate control maneuver the voltages to the

torque motors are given by the following equation.

V
mx

Vmy
I
i
I

Vmz

-K

= 0

0

0 0

K 0
T3

0 K
0t

_F
iTlr -

T3r - T 3

i - 0t_r

L

T 1

(Eq 6.9.1)

The voltages given by equation 6.9. 1 may be substituted into

equations 6.4.6, 6.4.7, and 6.4. 17 to find an expression for

the gimbal angles as a function of the rate variables and the

rate inputs. For shortness we write

K 1 = KT1KtxPx

K 2 = KT3Ktypy

K 3 = Ka Kt_ Pa

which gives the following matrix equation.
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d + K1

0

0

K, ir'

K273 r

K3_ r

0

0

- C71

+2H

+
4

0

0

d
G_ +K 3

q

71 1

u --J

C_ 0 0

+ C_ 3 C_ 0

$73 S_ Cc_
+--

4 4

(Eq6.9.2)

The above matrix equation must be solved for the gimbal angle

rates so that these rates can be applied to the control system

represented by equation G. 2. ii. Because of the non-linearities

caused by the sine and cosine terms of equation 6.9.2, the

Laplace techniques are not simple to apply unless the angles can

be considered constant. Therefore, in the equations that follow

the notation employs the letter s so that a closed form solution

can be written, but this symbol s refers to the Laplacian oper-

ator only in the special case where sine and cosine values of

the gimbal angles can be considered constant. Otherwise, for

cases where the gimbal angles make large changes, the symbol

s must be interpreted as a differentiation with respect to time.

Solving the matrix equation 6.9.2 for the gimbal angle

rates and substituting in equation G. 2. ii gives the following

expression for the moments generated by the spacecraft control

system.
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As in the previous solution, rewrite equation 6.9.3 as follows.

M Rate = 2 Hi

Cont rolJ A

ooc_isK1_

C_C_ 3 SK2_

_SF3_ _" _22/_3r

/2 C_ SK3/
_r

+4H 2 [E]

(Eq 6.9.4)

Substituting equation 6.9.3 and 2.4.5 into equation 2.3.3 gives

the following equation for the response to rate control.

S 4 2elll  2e12)(4H2e1 
iiI S + 4 H2e22)Ix( 4H2e2 fly (4 H2e32)Ilz

4 H2e3

- - 2H

m

P

(4H2e23) q

S + 4 H2e33 ._r

- CaC_IK1S

SF + K
1_ 1

CaC73K2S

SF3. Y + K 2

2 Ca K3S

SG + K 3

I z - Iy qr)

u _

u

_/ir

"Y3r

0_ r

(Eq 6. 9.5)
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The uncoupled set of equations for roll, pitch and yaw
is given by the following.

M (SF1T+K1) + (2HCf, 1K 1S)
p _ x Tlr {Eq 6.9.6)

S{I xFI_/S + IxK 1 + (2HC_1)2)

M (SF3. Y + K2) - (2HC_3q = Y _'3r K 2 S)

S (IyF3,rS + IyK 2 + (2HC_3)2) -

(Eq 6.9.7)

M z(SGa + K 3) - a(4HCaK 3S)
r = (Eq 6.9.8)

S(Iz%S + IzK 3 + (2HCa) 2 )

The following equations are valid for the rate input

commands which drive the gimbal angles to large values in

those cases where there is negligible inter-axial coupling.

For Roll

FI? T 1 + KIT 1 = KiTlr - 2HC?I

M x = -2HCTI_I + Ix_

For Pitch

F3_,_ 3 + K2_, 3 = K2T3r + 2HC_3q _

/My = 2 HCT3_3 + ly

For Yaw

= + HCG_ + K3a K3a r a

M = 4HCaa + I r
z Z

(Eq 6.9.9)

(Eq 6.9. 10)

(Eq 6.9.11)
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For the completely general case it is necessary to

solve equations 6.9.2, G. 2.11, 2.4.5, and 2.3.3bymachine

computation.

2HCy I

/_Mx

Fly - (2 Jcgr+ JMp') s4-(2C 4-Bp')

! 2HCyI _

P

Figure 6.9.1 Block Diagram Representation for Roll Channel

of the Uncoupled Rate Control Equation.
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6.10 Summary

This chapter has served to derive the closed loop

equations of motion of the spacecraft. Examination of the

closed loop position control equation 6. 8. 3 and the closed

loop rate control equation 6. 9. 5 confirms the fact that the

equations are coupled from control interaction as well as the

Euler rate-product terms. Therefore, a completely general

solution requires assistance from a computer. One of the

reasons for choosing the four controller system is that many

of the large cross-coupling terms in the primary control

matrix vanish, and since the four controller system is a zero

momentum type system the cross-coupling terms of the gyro-

scopic coupling matrix are small. Cross-coupling is a problem

in any type of flying machine if we expect to actuate the con-

trol of two axes to their full travel simultaneously. Generally

speaking vehicles are not operated in this manner, and if

crossed controls are required one of the axes will predominate.

In the following chapter the equations of motion are

solved to determine the response of the vehicle. This is ac-

complished by assuming no interaxial coupling, and solving

the equations analytically. Making this assumption, many of

the equations can be solved in closed form whereas others

require graphical methods. It is believed that this approach

gives a better understanding and presentation of the system

than a pure computer solution which gives graphical response

of the vehicle to input disturbances.
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CHAPTER 7

DYNAMICS OF THE SPACECRAFT

7. 1 Introduction

This chapter evaluates the response of the spacecraft

using the equations developed in the preceding pages. This is ac-

complished by assumingthat the interaxial coupling among the

three control axes can be neglected. This assumption is valid

provided the control system is not appreciably saturated, and

that the astronauts do not attempt to simultaneously actuate the

controls to yield large rates about two axes. In any event, a

coiiLlitJ.Oll til;_t tll_ ,,,_,o_ per-necessary .......... is .........attitude control system .... *

form satisfactorily about each of the individual control axes so

that initial analysis of the equations of motion on an uncoupled

basis is considered reasonable. Also, several parameters of the

system must be numerically chosen, and their selection is greatly

simplified using uncoupled equations. These parameters include

the damping coefficient of the controllers, the gain of the rate

control loop, and the gain of the position control loop. It is visu-

alized that the spacecraft will be operated in one of three modes.

1. Zero Input Mode

2. Rate Control Mode

3. Position Control Mode

In addition to these three modes, a mode called the Adaptive

Mode will be discussed.

The zero input mode is that which results when no signal

is provided to the torque motors of the controllers. The control

system then operates as a rate stabilizer, and the gyro controllers

provide inherent sensing. The stability of the zero input mode

will serve as a criterion for the selection of the damping coefficient

of the controllers. The damping coefficient is then held constant
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for the other two modes. The purpose of the rate control is to

command the spacecraft to perform a particular attitude rate.

The stability of the rate control mode will be used to ascertain

the gain of the rate control loop, and the stability of the position

control mode will determine the gain of this loop. The adaptive
mode is the vehicle response to a controller failure.

The damping chosen for the controllers differs appreciably

from that used in systems which overdamp the gyro to the point

that it can be approximated as a first order system. In the present

design the controllers act as a true second order system with

two poles having both real and imaginary parts. This of course

complicates the solution of the equations, some of which cannot

be solved in closed form. Therefore, in many of the equations

which follow it is necessary to approximate the second order

systemby a first order system to arrive at useful results.

As was done in Chapter 5, the analysis will be accom-
plished using the equations for roll. The equations for pitch con-

trol are almost precisely the same as those for roll, and generally

the same parameters are required except that the numbers will

differ because of different moments of inertia of the spacecraft

about the roll and pitch axes. The yaw equations differ slightly

from those of roll, and a summary of the differences will be
made.
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7.2 Zero Input Mode

The uncoupled equations for the zero input motion are

given by equations 6.8. 5, 6.8.6, and 6.8.7 where the position

input terms have been dropped, and these equations are written

as follows.

P-- F1T Mx (Eq. 7.2. 1)

Ix Fl'TS ÷ 4 n 2 (C 71 )2

q F37 M= Y (Eq. 7.2. 2)

IF37S +4H 2 (C73)2

G M
/Y Z

r = (Eq. 7.2.3)
I G s _- 4H 2 (Cot) 2

Z ff

The stability of the spacecraft for the complete range of

gimbal angles can be investigated by assuming small perturbances

wherein the gimbal angle can be taken as a constant. Consider the

equation for roll motion and let F17 which is actually equal to

F17= (2Jag r4- JMp2) s ÷ _C*Bp 2) be written, for short-

ness, simply as F17 = Js ÷ k. This gives

M (s-b k/J)
X

p- (Eq. 7.2.4),

[ 4H2 (C71)2 ]I s2÷ _ ÷ j
x Ix
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The motion follows that of a second order system with a damping
ratio

_ j " (Eq. 7.2. 5).
k

- 4HC_ 1

and a natural frequency.

2 HC'y 1

_n- _ (Eq. 7.2. 5)
X

The effect of the disturbance is least when the gimbal angle is

small for which the following are defined

k ]_x •
_o- 4H _] _ (Eq. 7.2.6)

2H

_o- _ (Eq. 7.2.7)
X

The solution for the response of the system to an impulsive mo-

ment, Mo, for the lightly damped controller is given by the fol-

lowing equation.

f , 2' i

Mo C_I -_o_o t 2 -1 _C_'_- _ o
P = I e sin _o_C_'_-_ot +tan

x 4C2 2" _o
_'1 -_o

(Eq. 7.2. 8)

Examination of this equation shows that the roll rate is always

stable for any gimbal angle less than 90 degrees because the ex-

ponential damping factor is not a function of the gimbal angle.

Critical damping occurs when C_ 1 - _o and the solution for this

motion is given by the following equation.
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_, - r_o _OotM° r_ t÷l eP I "o_o .J
X

(Eq. 7.2.8)

The highly damped motion can be approximated by assuming that

the gimbal moment of inertia is negligibly small giving the fol-

lowing equation for roll rate.

M
X

P- I
X

--_S ' 4H2(C'YI)2t'_ I-_

(Eq. 7. 2.9)

M
O

P-I
X

The solution to this equation for an impulsive moment disturbance

is given by

_ 4 H 2 C'y_ t

e I k
X

(Eq. 7.2 10)

In terms of previously defined parameters this motion can be

written as follows.

n t
2_M

O

P- I e (Eq.
X

7.2.11)

The analysis of the response due to a step moment dis-

turbance is much more difficult to analyze because the gimbal

angle cannot be assumed constant. As a beginning, however, let

us assume that the moment is small enough that first order dyna-

mics can be used in which case equation 7.2. 9 is considered.

Further, let the gimbal angle remain small so that the cosine of

the gimbal angle can be approximated as a value of one. A step

of M 1 at time zero gives the following.
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I -¢00 1

Mlk 2_o

P - 4H 2 - e (Eq. 7. 2. 12)

The final value is seen to be independent of the moment of inertia

of the vehicle. The roll rate Of a vehicle without an attitude control

system in response to a step disturbance moment is given by

M 1

P - I t (Eq. 7.2. 13)
X

The roll rate of a spacecraft without a control system compared

to that with gyro controllers both of which experience a step mo-

ment disturbance is given by dividing equation 7. 2. 13 by 7. 2. 12

as follows.

Pwithout control system _o

Pwith gyro Controllers 2_o
-¢D O

e2_o

(Eq. 7.2. 14)

¢0

o is the reciprocal of the time constant for theThe factor 2
' O

gyro controller and the factor is large for fast controllers, so

that the ratio is plotted initially as a steep curve in Figure 7. 2.1.

The effect of saturation of the gyro controllers is sketched in to

show that the ratio approaches unity as time increases.
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The solution for a step moment disturbance wherein the

controller gimbal angles move through their complete range is

solved by a phase plane analysis, however, first consider the

sPecial case of recovery from a large roll rate in the absence

of external moments. The solution for the gimbal angle has been
determined as follows.

0_

{o,2_ o

71 = arc tan e- tan7

(Eq. 7. 2.15)

Using this relation for the gimbal angle gives the following equa-

tion for the roll rate.

P = Pmax sin

2_ ° t

arc tan e tan7 o

(Eq. 7. 2. 16)

These equations are plotted in Figure 7.2. 3 for an initial gimbal

angle of 89 degrees.

9_

60 o-

0o_
o

P/_mox

wot

• r

8 1_3 12

1.0

-0.8

-0.6

l
•0.4

-0.2

Figure 7.2.3 Plot of gimbal angle, 71, and non-dimensional

roll rate, p/Pmax, for spacecraft controlled by two gyro control-

lers with initial condition of 71(0) = 89 degrees. Total angular

momentum of system is zero and there are no external moments.
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Figure 7.2. 1 A plot of the ratio of roll rate of an uncontrolled

spacecraft compared to a gyro controlled spacecraft both of

which experience a step moment disturbance. Dotted curve is

undocumented.
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This special case of recovery from a large roll rate in

the absence of external moments also has a simple phase plane

solution as follows. As shown in Figure 7.2.4, plot the following

equations for selected values of gimbal angle.

° (2 H C'7'1 )2

P + I k p = 0 (Eq. 7.2. 17)
X

P = Pmax S'Y1 (Eq. 7.2.18)

The trajectory is determined by intersections of lines of the same

gimbal angle. The times of the trajectory can be found from the

ratio Ap ]Paverage' and from this the curve roll rate versus

_-_,,_ ,-,_,, _,= wv_,_. ,he, ca .... , , ,,,, rate can ho_,, integrated +n._

find the roll displacement as follows.

¢

¢ = _ pdt (Eq. 7.2. 19)
(0)
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k

Figure 7.2.5 The relationship between gimbal angle and roll

di_laeement for the zero input mode with zero initialconditions.
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A closed form solution of equation 7. 2. 1 is difficult even

when only the first order dynamics are considered. There is,

however, a direct relationship between the vehicle attitude angu-

lar displacement and the gimbal angle. For example, the follow-

ing equation is always true for zero initial conditions and for zero

input to the controller.

•J +k'y-- -2HC7_ p (Eq. 7. 2. 20)

Considering only first order dynamics the equation can be inte-

grated to give the following result.

f

= 2 arc tan_

L
77

e -Z

This equation is plotted in Figure 7. 2. 5.

(Eq. 7. 2. 21)

An approximate phase plane analysis can be made of the

position input mode operating to minimize a step torque distur-

bance by assuming that _ is constant. The first order differential

equation approximation of equation 7.2.1 is given by

4 H 2 (C'Y1)2 M
• X

P + I 'k P - I (Eq. 7. 2. 22)
X X

This equation is plotted in Figure 7. 2. 6 for various contours of

7'1which also represent contours of constant time since

At = ,--_'_- (Eq. 7. 2. 23)

Since increased gimbal angles demand increased values of the

roll rate, p, it is clear that p must also increase. At the end of

the transient whenp = M x k/4H 2 , _ is very small_ but its

average value over the interval from 711 = 0° to 711 = - I0° can

be found by reading from Figure 7. 2.6 the value of

Mxk

4'H 2
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and computing Pave from the relation

A
Pave- Z p (Eq. 7.2.24)

Figure 7.2. 7 is an analog simulation of the zero input mode and

shows that _ holds constant at -M/2H until the gimbal angle gets

beyond about 40 degrees. A phase trajectory determined by the

method outlined above is shown in Figure 7.2.6.
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Figure 7.2.6 Estimated Phase Trajectory for Zero Input

Mode Response to a Step Moment Disturbance.
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All of the equations for zero input control have been presented
in parametric form with no actual numerical values substituted in

the equations. Therefore, the equations are valid for any general

twin gyro controller system where interaxial coupling is negligible.

The zero input mode is purely a rate stabilization system. It has

been shown that an impulsive torque disturbance acting on the

vehicle will cause the spacecraft to roll through a displacement

angle, but that the roll rate will damp to zero. A step moment

disturbance will cause a steady state roll and consequently an in-

creasing roll displacement. The zero input system is primarily

a rate stabilization system and the parameter which can conven-

iently be chosen to give the desired response is the damping

coefficient, k, of the gyro controller. It is not necessary at this

pohit to ............................. say that _'--'-cuoose a pa_'t,cu_ar va,ue u, k oLuer than tu- tu_

quantity is chosen on the basis of equation 7. 2.6 which solved for

the damping coefficient is written as follows.

k = 4H_ ° _v._ (Eq. 7.2. 27)
X

From a practical standpoint all of the quantities in equation

7.2.22 except _o are dictated in the design by other considerations.

I concerns the overall vehicle design and is determined by thex

mission and the detail design of the spacecraft. The angular mo-

mentum of the controller, H, is determined from controllability

requirements, and the combined inertia of the gimbal, case, and

rotor, J, is to be determined by optimum design of the controller

to minimize the ratio of the total mass of the controller compared

with the angular momentum of the controller. This leaves the

parameter _o which is to be chosen by the desired location of the

closed loop poles of the zero input mode. Although the damping

coefficient, k, is chosen primarily on the basis of the desired

response to disturbances of the zero input mode, the choice does

affect the other modes. For example, the closed loop poles of

the zero input mode will be the open loop poles of the position
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control mode. Therefore, let us delay the numerical choice of

the damping ratio, _o' until the equations of the other modes
have been examined.

4.0.8

+0.4
W'
n_
(_ 0

._-0.4

-0,8

o
z
o
u
uJ
(n +5.
tO

. o

_ --5.
O

o
2

.t-80

+40
Id
a, 0

" --40

--80

m

" l I

-I_-io SEC-'I

TRANSIENT

:: ,ooosEc,_
COMPLETE RUN

Figure 7.2.7 Spacecraft Response in Roll to a Step

Moment Disturbance o:f i0 ibrft. I - 106 ib-ft-sec 2,
x

J = i0 Ib-ft-sec 2 H = 104 lh-ft-sec, Co = 0. 866. Data from

Analog Stimulation.
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7. 3 Rate Control Mode

The equations for rate input control given by Equation 6. 9.9

can be solved graphically by a plot similar to 7.2.4 where the

trajectory is defined by the intersections of lines of equal gimbal

angle. For this solution equation 6.9.9 is written in a slightly
different form which, neglecting the external moment disturbance,
is as follows.

+ (2HCf) 2 f_. "_ K1 2HCf/

Ix k P = %,l'lr-%'lJ Ix k

(Eq. 7.3. 1)

This equation is plotted for p versus p in Figure 7. 3. 1 and gives

contours of constant gimbal angle which slope from left to right.
,-_1 ..... _1

• ne _t:u.u equation needed is _'--" of equation 7 2. 18 ---'_;_'- "Lilc_t • VY JLZ_._L IS

the requirement that angular momentum is conserved. This

equation is plotted in Figure 7.3. 1 as vertical contours of con-

stant gimbal angle. The intersections provide the solution. The

gain of the gimbal position control loop, K1, has been allowed

to have a relation to other parameters of the vehicle as follows.

m4H 2
K1 = I (Eq. 7.3. 2)

X

The factor m may be called a gain ratio, and Figure 7. 3. 1 indi-

cates that for high gain ratios the roll rate is an exponential

represented by a constant slope on the plot of p versus p. The

effect of the gain ratio factor, m, is shown more clearly in

Figure 7. 3. 2 which is a plot of the steady state gimbal angle

versus the value of the step input. This plot shows that for very

high gain the gimbal angle is linear with the input angle, but for

a gain ratio of one the variation is highly non-linear. If the gain

ratio is less than one, the position control system does not have

the capability of holding the complete range of gimbal angles in

a stable manner. Figures 7.3.3 and 7.3.4 further illustrate the

effect of low gain ratios. Figure 7.3.3 shows a plot of steady

189



EQUATION OF SLOPING T CONTOURS

I_+ (2HC7')2 KI(Ylr- 7')_
klx P= _'X

1.6 T=IO 20 30 40 50 60 WHERE KI = m(2HCT)2

__ m= 2 EQUATION OF VERTICAL T

113=
,.p.. _' I/-Im: l,z CONTOURS

I

21.,,
0.2_

0 0.2 0.4 Q6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P

lmPmax

Figure 7.3.1 Phase trajectory for spacecraft response

to a full step displacement rate control input. The external

moment disturbance is zero. The response is defined by

the intersections of the lines of constant gimbal angles

plotted for the two equations of motion shown on the

figure.
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Figure 7.3.3 Steady state values of roll gimbal angle for

gain ratios less than one in the gimbal angle position control

loop used in rate input control.
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than one in the gimbal angle position control loop used in

rate input control mode.
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state gimbal angle for a step input of ninety degrees versus the full

range of gain ratios less than one. Careful inspection of the cur-

vature shows an inflection point at 45 degrees which was shown

to be a peak control power point in section 5. 31. Figure 7. 3.4

shows the roll capability for a step input of ninety degrees for

the range of gain ratios less than one.

From a stability standpoint the rate input mode has a natural
frequency from equation 6. 9.6 equal to

,/'2 H CT 1 (Eq. 7.3. 3)
_n = + \IX J

This natural frequency is greater than that for zero input control

given by equation 7.2. 5.

The product of the damping ratio and the natural frequency

are the same for zero input and rate input. Thus

k (Eq. 7.3.4)2_r_ n - j

If the damping coefficient,

control then according to equation 7.2. 6,

k = 4H_ °
x

Substituting this k into equation 7. 3.4 gives

k, is chosen on the basis of zero input

(Eq. 7.3. 5)

4H_
--O

2 _r_n =
X

(Eq. 7. 3. 6)

Then further substitution of K 1 in equation 7.3.2 into equation

7.3.3 gives

2H _/m + (C_/) 2 _ (Eq. 7.3. 7)

_n = _'_
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Therefore,

_'r = o (Eq. 7.3.8)

m + (C-y) 2"

which is to say thatthe damping ratio for rate control is propor-

tional to the damping ratio for zero input control by the factor

1/_/m + (CT) 2' The greatest difference between the two damping

ratios occurs at zero gimbal angle. Hence,

_o
=_ x (Eq. 7.3. 9)

_r _m + 1

Actually, large values of the gain factor m gives more precise

positioning of the gimbal angle as shown by Figure 7. 3. 2, but the

greater this gain the more lightly damped (more oscillatory) be-

comes the rate control mode. It appears that an acceptable solu-

tion lies in the choice of the gain ratio, m, as unity. For a gain

ratio of unity the gimbal angle can be positioned at the full ninety

degree position, yet for the range of 45 degrees or less the curve

for m = 1 of Figure 7. 3. 2 is approximately linear. A gimbal

angle of 45 degrees gives morethanT0%ofthe maximum roll rate;

therefore, it is not likely that the vehicle wil.l be operated at

angles of more than 45 degrees except for the full roll rate post-

tion of 90 degrees. For unity gain ratio

O

_r= _2
(Eq. 7.3. 10)

By cross-plotting the steady state response to an impulsive

disturbance torque on the spacecraft shown in Figure 7.3. 5 the

roll rates can be compared with those for zero input mode and

those for no control system aboard the vehicle. For unity gain

the rates are approximately one-half that of a vehicle without a

control system.
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Figure 7.3.5 Plot of steady state roll rate versus

magnitude of torque disturbance impulse for rate control

mode. Infinite gain ratio corresponds to controllers that

are held rigidly fixed in the vehicle, and is the same as

vehicle response with out a control system. Zero gain

ratio corresponds to zero input mode of section 7.2.
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7.4 Position Control Mode

The position control mode is formed by closing an attitude

angle feedback loop around the zero input mode. A convenient

method for studying the position control mode is a locus of roots

which is a useful technique found in most control theory texts.

Using root locus theory it is known that the closed loop poles of

the zero input mode form the open loop poles of the position con-

trol mode. Therefore, the open loop equation for the position

control mode can be written for roll motion as

Kx2HC'Y1) Cr + FI_,Mx

(¢)open - S_ xFl.Yloop S+ 4H2(C'Y1) 2) (Eq. 7.4.1)

where the gimbal angle must be considered approximately con-

stant. The closed loop equation is given by

K x 2H C_/1) Cr + FI_, Mx

(I x F1.yS2 + 4 H2(C71)2 S+ Kx2 HCf, l)

(Eq. 7.4, 2)
,'t

The poles of the denominator of equation 7.4. 1 are to be deter-

mined so that the position control mode has good response to input

commands and to minimize the disturbances of external torques

on the spacecraft. An interesting theorem which applies to a con-

trol system with no zeros and three open loop poles, one of which

is at the origin, is as follows: the natural frequency of a unity

feedback control system having no zeros and three open loop

poles, one of which is at the origin, can never be greater than the

natural frequency of the system operating open loop. This theorem

is easily proven by substituting j_ in the characteristic equation

of the closed loop system and equating the imaginary part to zero.

Thetheoremis illustrated in Figure 7.4. 1 by noting that all stable

poles of the closed loop system lie within the circle of radius
O
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Figure 7.4.1 Illustration of four possible geometric patterns

for the locus of roots for the position control mode. The three

poles shown are the poles of the closed loop zero input mode

which constitute the open loop poles of the position control

mode. The closed loop poles of the position control mode will

lie on the root loci depending on the value of the gain of the

position control loop.
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which is the natural frequency of the open loop system. The pri-

mary purpose in Figure 7.4. i is to illustrate the four possible

geometric patterns that the locus of roots of the position control

system can have. If the damping ratio of the zero input mode, _o"

is greater than one, then Figure 7.4.1 (a) applies. If the damping

ratio is less than one but greater than 0. 866 then Figure 7. 4. I (b)

applies. If less than 0. 866 then Figure 7.4.1 (c) represents the

locus of roots. The ease where _o is exactly equal to 0. 866 is

shown in Figure 7.4.1 (d}. The overdamped case (a) has poor

response at low gains, and it becomes too oscillatory at the high-

er gains. Values of _o less than 0.7 are not satisfactory because

the rate control mode and the position control mode both become

too oscillatory. Values of _o between 0. 7 and i. 0 give an accept-

able solution so that the vehicle has good respons:e to input com-

mands as well as good response to damp torque disturbances.

As an example Of this section let us solve the equations of motion

using a damping ratio of _'o = 0. 866 such that the locus of roots

of Figure 7.4.1 (d) applies. This is not suggested as an optimum

choice but is considered to be an example of a satisfactory loca-

tion of the closed loop poles. Choosing a value of K x such that all

three closed loop poles coalesce gives the following equations.

K = 0.77 _ (Eq. 7. 4. 3)

x d-Y
X

where
O

0. 192 _o " x x

$3+ 3_. 577_o)$2 + 3_. 577 _o_2(C_/1)2 S+0. 192

(Eq. 7.4. 4)

is natural frequency of zero input mode given

by equation 7.2.7.
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To further explain equation 7.4.4, if the cubic denominator

is written in the following form

($2+ 2_p _nS +_n_ (S+_) = 0 (Eq. 7.4. 5)

then the solution chosen as an example has the following values

for the parameters.

= i
P

= 0. 577
n o

= 0. 577 _
O

(Eq. 7.4.6)

(Eq. 7.4. 7)

(Eq. 7.4.8)

The primary purpose of the position control mode is to enable the

spacecraft to track a reference line. This reference line may be

the line of sight to a star, and usually in this mode the vehicle

attitude rates are either small or are constant. It is considered

that equation 7.4.4 can be evaluated for constant gimbal angles

if we assume that the error signal from the sensor is limited to

some maximum value. In actual practice this limiting will be

accomplished by the saturation of the sensor. If the maximum

error signal from the sensor is Ce then the steady state roll rate

resulting from the constant sensor error can be derived as the

following equat ion.

Ce = 5. 2 x Pmax" Pmax

(Eq. 7.4. 9)

This curve is shown in Figure 7.4.2 and shows that for a given

error signal, ¢e' there are two solutions for roll rate. The

solution at the higher rate is unstable for the same reasons that

the initial point at Pmax is unstable in Figure 7.2.4. Therefore,

to avoid all possibilities of the position control mode being un-

stable the error signal from the sensor is limited to that giving
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a maximum gimba ! angle of 30 ° which allows the position control

loop to drive the rate of t'he spacecraft up to one-half Pmax" This

limiting also enables the stability analysis of the position control

equations to be accomplished with a constant gimbal angle. Thus

for small gimbal angles the position control equation 7.4.4 can

be written as follows.

0. 192_ Cr + +3 . 577_ M /I
_) ---- 0 X X

(Eq. 7.4. lO)

For zero sensor input the response to an impulsive moment dis-

turbance is given by

M

_. t2 )o 577 _ + t
¢- I o

X

-0. 577_ t
e o

(Eq. 7.4. 11)

The response to a step moment disturbance is given by

¢- I
X 3Ul t 3t 3 1_ 577_0)2 - + (0. 577_O) + _. 577_0)2

(Eq. 7.4. 12)

For zero moment disturbance the response to a step position

input angle is ,_lven by
f.

¢ = ¢1 ul(t) - 2 + 0.577_o

--0. 577 co t
t+l e o

(Eq. 7.4. 13)

-0,577_ot _

e /.

.J
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The response to an impulsive input is given by

The response is seen to be well behaved at small gimbal
angles; however, consider the location of the poles of the closed

loop position control mode as the gimbal angle becomes larger.
Figure 7.4.3 shows the migration of the poles for the value of

Kx chosen in equation 7.4.3. This figure indicates that at gimbal

angles greater than 30 degrees the system becomes very oscilla-
tory, and at approximately 84 degrees the system becomes unstable.

The effect of the initial choice in open loop damping ratio, to,
is shown in Figure 7.4.4 which is plotted for the same K . Ax
smaller K would of course raise the curve of Figure 7.4.4 sox
that in the end a singular point at 90 degrees would result.
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7. 5 Adaptive Mode

It has been stated earlier that the four gyro system has

the adaptive feature that permits Continuous three axis control in

the event that one of the four gyros is lost. This mode can be

illustrated by assuming the loss of the number four gyro control-

ler and examining the resulting spacecraft response. At the out-

set, let it be assumed that the controller fails such that it loses

its angular momentum at a steady rate over time, tI. Assuming

no interaxial coupling this gives a moment disturbance about the

roll axis as follows.

dH
dt = Mx (Eq. 7 5. 1)

The moment disturbance is seen to be a step of H/t I which lasts

for t 1 seconds, and this gives a total torque impulse of H.

The spacecraft response to such a disturbance can be ob-

tained from the equations of the previous section; however to

illustrate the response for the adaptive mode the problem was

set up on an analog computer and the results are shown in Figure

7. 5. 1 and 7. 5.2 for the case where a sensor is providing attitude

errors. The zero input mode also operates to provide rate

stabilization upon the loss of any controller.

207



or}
t2

bJ
w +1

0
a

w
w

w

.g.
_o

•t-5 --

0
f I

uJ
(/)

(n +5

n.- 0
(.O
LI,J

!'80

U) +40'
bJ
bJ
" 0
(.9
bJ
a -40

>q -so

m

D

b

m

I SEC I SEC
h--q :-:. • I000 SEC_ l.,-q

INfTIAL TRANSIENT COMPLETE RUN RECOVERY TRANSIENT

Figure 7.5.1 Spacecraft Roll Rate and Roll Angle with Gimbal Rate

and Angle for the Adaptive Mode. Data is from Analog Computer,

I = 106 ib-ft-sec 2, J = I0 ib-ft-sec 2, t I -- i000 sec. H = 104
x

ib-ft-sec, C,_'--0"866' See Figure 7.5.2 for Phase Trajectory.

Complete Run includes Initial Transient and Recovery Transient.

208



+1"5I

| f_ INITIAL

/ _ '_ TRANSIENT

t I DISPLACEMENT_
IOS_ DEGREES

RECOVERY
TRANSIE

Figure 7.5.2 Phase Trajectory for Adaptive Mode

I --106 lb-ft-sec 2 J -- 10 lb-ft-sec 2 H -- 104 lb-ft-sec.

_ ---- 0.866. See Figure 7.5.1.

209



7.6 Summary

This chapter has evaluated the response of the system

to input disturbances and input commands for the zero input mode,

the rate control mode, and the position control mode. The re-

sults are shown in the illustration of the location of the poles of

the various modes shown in Figure 7.6. i. This plot shows that

an initial choice of the damping ratio of the zero input mode, _o'

of approximately 0. 866 gives satisfactory performance for the

rate control mode and the position control mode; therefore, no

adaptive type change in the damping of the gimbal or tandem com-

pensation is required to satisfy all three modes of operation.

The effects of increase in gimbal angle is seen to make the zero

input mode and the rate control mode less oscillatory, whereas

the position control mode becomes more oscillatory. For a fixed

value of gain, K x, there exists a gimbal angle for the position

control mode which makes the system unstable.

The system operating in the position control mode has

inherent adaptive characteristics in that the failure of any one of

the gyro controllers will automatically be compensated for by the

repositioning of the opposite pair of controllers.

The examples have been given for the roll equations.

The pitch equations are almost identical except for the sign of

the gain K . The general solution for the yaw equations are
Y

identical except that the functions FI, Y and F3_ have been defined

for a pair of controllers whereas G is defined for a single con-

troller. Also, the yaw controller uses all four controllers, and

therefore faster response is available, if desired.
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Figure 7.6.1 Illustration of the location of the poles of the Zero
Input Mode (_o --0.866), the Rate Control Mode (re=l), and

the Position Control Mode. The poles are shown for gimbal angles

of zero and 30 degrees to show effects of change in gimbal angle.

The open loop poles of the position control mode are the closed

loop poles of the zero input mode.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary of the General Concepts of the Thesis

The thesis is concerned with the problem of attitude

control of a spacecraft engaged in an extended mission. The

foremost application of such a spacecraft is a manned explora-

tion of the planet Mars. The factors considered in choosing a

suitable attitude control system are

Maximum reliability,

Minimum. ejection of mass,

Minimum average power,

Minimum system weight, and

Minimum peak power.

Attitude control systems which do not expend fuel mass

but derive control moments by a time rate of change in angular

momentum of a mass that remains within the spacecraft are

called momentum exchange type attitude control systems and con-

sume only power in their operation. In a space environment,

power is more available and may actually be re-supplied from the

sun, whereas expulsion control fuel is limited to that initially

loaded aboard the spacecraft. Based on this, the main theme of

the thesis is the study of momentum exchange type attitude con-

trol systems.

The thesis proceeds to accomplish five objectives set

forth in section i. 2. In short, these objectives are

derive the equations of motion,

determine the torque disturbances,
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select a specific control system,

determine the response of the spacecraft, and

present the conclusions.

The attitude control system chosen to best satisfy the

spacecraft requirements is a configuration of four controllers

which operate to apply gyroscopic torques to the spacecraft.

Each controller may be described as a gyroscopic type device

having two degrees-of-freedom. The four controllers are ar-

ranged in two pairs with each pair operating back-to-back. One

pair of the controllers is actuated symmetrically to generate

torques applied to roll the vehicle, whereas, the other pair,

mounted normal to the first pair, provides torques for pitch con-

trol. All four of the controllers provide torques for yaw control.

This configuration of four controllers has a redundancy in its

ability to effect a change in angular momentum along each of the

three spacecraft control axes such that the system provides un-

interrupted control upon the complete loss of angular momentum
of any one controller.

The four controller attitude control system is operated
in three modes:

Zero Input Mode

Rate Control Mode

Position Control Mode.

The zero input mode enables the spacecraft to be rate

stabilized in the absence of input commands. The rate control

mode provides a means of changing the attitude of the vehicle at

the maximum rate capability of the controllers. The position

control mode is provided for alignment of the spacecraft with res-

pect to a reference line of sight. Satisfactory stability charac-
teristics were obtained for each mode.
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8. 2 Summary of Chapter Conclusions

Each chapter contains a brief summary, the highlights

of which follow.

Chapter i: This chapter introduces the problem of attitude con-

trol. In the practical problem the control system

engineer must have knowledge of the physical charac-

teristics of the spacecraft, the controllability re-

quirements, and the stability requirements.

Chapter 2: Chapter 2 contains the equations of motion of the

spacecraft. The torques generated by the control

system depend on the attitude of the controller

rotor with respect to the spacecraft and the rates

and ---_ ..... -'---- k_kJl£b_ %J.L..L_J. JI. k.Dt, k.o_ vv .u,,t,,_ _ _-

pect to inertial space. The equations are presented

in a manner which facilitates the evaluation of each

of these variables.

One or more controllers are combined to form

various attitude control systems. Control logic is

required to give non-interacting control for the

roll, pitch, and yaw vehicle attitude variables.

A system of compensation is devised to minimize

cross- coupling.

This chapter seeks to determine the torque dis-

turbances acting on a spacecraft. It is determined

that the external torque disturbances can be mini-

mized by design and operation of the spacecraft.

The torques which originate within the spacecraft

from masses which do not leave the system have

a zero mean value and their effects can be com-

pensated for by using a momentum exchange type

attitude control system.

Chapter 3:

Chapter 4:
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Chapter 5:

Chapter 6:

Chapter 7:

This chapter compared the various systems and
determined that the four gyro controller best ful-

filled the control system requirements. The six

gyro control system is the second choice. Inertia
reaction wheel systems have very low power effi-

ciency, and they lack the inherent stabilizing char-

acteristics of the gyro controllers. Mass expulslon
systems must be provided to some extent to de-

saturate the momentum exchange system, but if

used continuously, large amounts of fuel will be re-

quired unless a limit cycle of the order of ]5 min-

utes is provided.

The control loop was closed using the four gyro

controller. A general solution of the equations re-

quires machine computation because of the non-

linearity and complexity of the equations. Three

modes of operation are considered. Zero Input

Mode, Rate Control Mode, and Position Control
Mode.

The response of the spacecraft is found to be satis-

factory for all modes of operation using a fixed

value of gimbal damping. The zero input mode and

the rate control mode become less oscillatory at

larger gimbal angles_ whereas the position control

mode becomes more oscillatory. The error signal

from the sensor must be limited to avoid a possible

unstable condition which drives the gimbal to their

full 90 degree position.
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8.3 Summary of Characteristics of Gyro Type Controllers

The following conclusions are presented concerning

gyro type controllers used to provide attitude control of space-

craft.

a. The use of gyro controllers operating back-to-back

eliminates large cross control moments typical of single gyro

controllers, and this becomes more important as the gimbal

angle is increased.

b. Gyro controllers should be operated without an ap-

preciable amount of saturation in order to minimize gyroscopic

cross coupling moments. This statement is true about any mo-

mentum exchange system, and suggests that zero angular mo-

....._....._ *'-_ " " " do no+ havementum type systems aide p_v,v_ _ cu to _**u_= wnlcn

zero angular momentum in their initial configuration.

c. Except for the unstable, full 90 degree position of the

gyro controllers where no control moment is required, gyro

controllers require continuous control moments to provide an

attitude rate to the spacecraft.

d. During the angular acceleration of the spacecraft to

an attitude rate the torque multiplication for the gyro torquer is

high. The ideal torque gain for a pair of controllers operating

open loop is equal to

e. Gyro controllers provide inherent rate stabilization.

f. Since the gyro gimbal is free to change its attitude

with respect to the spacecraft, generally a control system using

several gyro controllers will have inherent adaptive characteris-

tics, in that, the failure of a single gyro unit will be compensated

for by the repositioning of one or more of the other gyros.
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g. In the absence of external torques the spacecraft as-

sumes a particular attitude rate corresponding to a controlled

gimbal position as given by the following equation for roll rate.

P =Pmax sin 71

h. Gyro controllers are more efficient than wheel con-

trollers since they can effect a change in angular momentum of

the spacecraft without a change in their kinetic energy, whereas

wheel controllers require a kinetic energy change to effect an

angular momentum change which results in a wheel efficiency

ratio of the order of the ratio of the wheel moment of inertia to

the spacecraft moment of inertia.

i. The provision of a position control loop for the gimbal

angle, as is done in the rate control mode, causes a deterioration

in the ability of the gyro to provide inherent rate stabilization.

j. The ratio of moment of inertia to damping coefficient

for the gyro controller should be greater than that typically used

for integrating gyros of inertial navigation systems.

k. The power requirement for a gyro controller is ap-

proximately constant as compared to an inertia wheel which has

severe peak power requirements.

i. Gyro controllers can provide fast, accurate, and well

damped control for manned spacecraft.
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8.4 Recommendations for Further Study

As an extension to the thesis it is considered desirable

to continue the study in the following areas.

a. Optimization of the design of gyro controllers.

b. Study of controllers which employ fluids to obtain a

change in angular momentum.

c. By the use of machine computation, determine the

effects of the cross coupling moments acting on the spacecraft.

d. Determine the feasibility of using existing angular

moment such as power turbines in a spacecraft to achieve atti-

tude control.

e. Investigate devices which can stor_ enei_gy as well as

deliver energy for use with inertia reaction wheel control sys-

tems.
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APPENDIX A

SYMBOLS AND MATRIX NOTATION

/k. 1 Matrix Notation

The treatment of an analytical problem that uses several

sets of orthogonal Cartesian coordinates is simplified if matrix

methods are employed so that the coordinate frames are unam-

biguously inferred by the matrix expressions. In reference 1 there

is contained a particularly good explanation of matrix notation as

applied to control system problems. Thus for detailed explanation

the reader is referred to that reference and only a brief discussion

of the notation is presented herein.

A.2 Coordinate Transformation Matrices
L

The symbol Q is defined as an orthogonal transformation

between two Cartesian coordinate frames, and it is a 3 × .3 square

matrix. Each, Q shall contain a double subscript indicating the

pertinent coordinate reference frames in a "to-from" sequence

from left to right. For example, QIA is the coordinate transfor-

mation which is post multiplied by a vector in the A frame to

transform the vector to the I frame. QAI then is the coordinate

transformation that transforms a vector from the I frame to the

A frame, and since all Q transformations are orthogonal trans-

formations the operation of inverting a Q matrix is simply that of

taking the transpose of the matrix.

QAI = = I (Eq. A. 2. 1)

Choice of the "to-from" sequence in sub_icripts facilitates

multiple transformations so that the following is true.

QIR = QIV QVA QAR (Zq. A. 2.2)
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It is sometimes necessary to represent a coordinate frame

by more than one letter, as for example the gimbal frame is re-

ferred to as GIM. When th_'_ is chance of ambiguity in a subscript

a comma is used to separate the two frames. Thus the coordinate

transformation QA, GIM represents the coordinate transformation

to the A frame from the GIM frame. The coordinate frames used

in this thesis are contained in Appendix C.

A. 3 Relative Velocities

A velocity is a vector quantity and is expressed in matrix

form by a column vector. Thus WIE means the 3 x 1 matrix rep-

resenting the angular velocity of frame E relative to frame I, ex-

pressed in frame E.

In matrix equations it is necessary to have a means of

expressing the operation of a vector cross product. Thus consider

a vector

5R = 1T + m 7 + n_ (Eq. A. 3.1)

and a vector

The cross product

(Refer to ref 29

p 190)

HR -- A7 + B%-+

WIR x _R = m

B

(Eq. A. 32)

--_ (Eq. A. 3.3)

WIR x K R = (mC- nB)'i + (nA-1C)'j -_ (1B-mA)_

(Eq. A. 3.4)

In matrix form the result of the cross product operation can be

represented as a column matrix such that,

j-nB

_'HR_ j -= nA 1C
WI R B m

(I,q. A. 3.5)
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WIR

Then upon separation of the variables associated with

and HRJ R
respectively gives:

m

0 -n

= n 0
R

-m 1
D

m

m

-1

0

(Eq. A. 3£)

Therefore we define from any column matrix such as

the 3 x 3 antisymmetric matrix

(Eq. A. 3.7)

m

0 -n m

n 0 -1

-m 1 0

m

(Eq. A. 3B)

Reference 1 derives this definition in a more rigorous

manner from the fundamental operation of differentiating a matrix

equation. Suppose

WIR = QRA WIA + WAR (Eq. A. 3.9)

Differentiating with respect to time

g • •

WIR = QRA WIA + QRA WIA + WAR (Eq. A. 3.10)

Since QRA QAR = I, a matrix QRA can be factored from

equation A. 310.

•WIR = QRA IA ÷ QAR QRA W + WAR (Eq. A. all)
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and by differentiating each of the elements of QRA and premulti-
plying the result by QAR we find that

QAR QRA is a 3 x 3 antisymmetric matrix

of the form

QAR QRA = WRA_ as defined in equation A. 3°_
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A. 4 Numberin_ of Controller Elements

When control systems are considered that contain many

elements some system must be devised to keep track of the

various elements. For the lack of a better arrangement the con-

trollers have simply been numbered as the problems have been

solved. Therefore, the following is a list of the various numbers

assigned to the controllers (Gyro).

Gyro with Spin Reference1

2 Gyro

3 Gyro

4 Gyro

5 Gyro

f_ .....
_yz-u

7

with

with

with

with

with

Axis along

Spin Reference Axis along

Spin Reference Axis along

Spin Reference Axis along

Spin Reference Axis along

y axis

-y axis

x axls

- x axis

z axis

- z axis

Gyro with Spin Reference Axis in x-y plane

and rotated 120 ° from Gyro 1 about z axis.

8 Gyro with Spin Reference Axis in x-y plane

and rotated -120 ° from Gyro 1 about z axis.

9 Gyro with Spin Reference Axis in y-z plane and

rotated -a o degrees from -y axis about x axis

10 Gyro with Spin Reference Axis in y-z plane and

rotated _o degrees from -y axis about x axis

A particular control system may require single-degree-

of-freedom controllers, two-degree-of-freedom controllers, or

possibly three-degree-of-freedom controllers in which the angular

speed of the rotor may be varied in addition to the two degrees-

of-freedom in precession of the spin axis of the controller (33)

Therefore the controllers used for a particular system require

further specification to fully define their configuration. Accord-

ingly in Appendix G which presents specific control systems the-

angles required to align the case of the controller shown in

Figure B. 9 of Appendix B are given for each system. See also

Appendix C. 3 for coordinate transformations for particular con-

trollers.
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r7x, rTy,

¢, 0 and _,

XK" PK" & PKP

LAT

LON

_s

List of Symbols

Angle used to Define Gimbal Position in Case.

B. 10.

7 Angle used to Define Case Position Relative to Vehicle.

See Figure B. 9. Also used as a General Control System

Variable.

Angle used to Define Rotor Position Relative to Gimbal.

See Figure B. 11.

& _z Represent Primary Control Variables. Also used

as angle without subscript in Figure B. 3.

Represents Vernal Equinox.

Angular Rotations of Heliocentric Orbital Plane

Reference Frame relative to Heliocentric Inertial

Reference Frame.

Angular Rotations of vehicle-centered Vehicle

Reference frame with respect to an Inertial

Reference Frame.

Refers to Angular Rotations of Geocentric Orbital

Position Reference Frame relative to the Geo-

centric Orbital Plane Reference Frame. See

Figure B. 13.

Latitude. See Figure B. 14.

Longitude. See Figure B. 14

and As Angular Rotations used in Defining the Geocentric

Solar Reference Frame. See Figure B. 15.

A Represents an Angle when provided with a subscript.

used as a subscript the symbol refers to the Vehicle

Principal Axis Reference Frame. See Figure B. 8.

See Figure

When

E Energy
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H Angular Momentum

M Moment

P Power

Q Orthogonal Coordinate Transformation Matrix. (See Ap-

pendix C)

R Resistance, ohms

p, q, and r Vehicle Attitude Rates in Roll, Pitch, and Yaw

WIA Angular Velocity of Coordinate Frame A relative to

Coordinate Frame I expressed as a Column Matrix

I Moment of Inertia of Spacecraft

J Moment of Inertia of Components of Control System

n Refers to number of columns or rows of a matrix

• A dot over a symbol indicates a differentiation with re-

spect to time

Represents the forming of a Matrix from a Column Vec-

tor. See Section A. 3.

S Shorthand notation for the trigonometric sine.

C Shorthand notation for the trigonometric cosine.

Subscripts

T Total

CS Control System

ext External

VF Refers to Masses in the Vehicle that are Rigidly Fixed

to the Spacecraft

VM Refers to Masses in the Vehicle that Move Relative to the

Vehicle Exclusive of the Rotating Member of the Control

System Controller.
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N

a

i

C

g

r

x, y, and z

Represents a summation symbol for N Controllers

Armature

Summation Index. Also used in defining the Heliocentric

Orbital Plane Reference Frame. See Figure B. 2.

Refers to the Case of the Controller

Refers to the Gimbal of the Controller

Refers to the Rotor of the Controller

Generally refers to the x, y, and z direction of an

Orthogonal Coordinate Reference Frame.

w Wheel

Z C, YN, and XV

ZV, 1 ; YY; and XA

YU and X, GU

Z1

Refers to Angular Rotations of Vehicle-Cen-

tered Vehicle Reference Frame relative to

Vehicle-Centered Inertial Reference Frame.

See Figure B. 7.

Refers to Angular Rotations of Vehicle-Cen-

tered Principal Axis Frame relative to

Vehicle-Centered Vehicle Reference Frame.

See Figure B. 8.

Refers to Angular Rotations of Vehicle-Cen-

tered Gyro Case Axis Reference Frame rela-

tive to Vehicle-Centered Vehicle Reference

Frame. See Figure B. 9.

Refers to angular rotation of Earth. See Figure B. 12.

See section B. 1 for Symbols used for Coordinate Refer-

ence Frames.
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A. 5 Glossary of Terms

Active Control

Active control of a spacecraft is defined as the operation

of controlling the spacecraft with a torque producing con-

trol system operating with error sensors in a closed loop.

The control system alwaysconsumes energy.

Compensation

A signal provided to a control loop which is proportional

to a signal of another loop, and is used to minimize the

effects of an unwanted coupling between these two loops.

Three types of compensation are used in this report:

gyroscopic coupling_ cross control coupling, and space-

craft inertia cross coupling.

Control Logic Matrix

The control logic matrix is defined as an n × 3 matrix

which pre-multiplies the primary control variables to

define individual signals to the n-degree-of-freedom con-

troller.

Control S_zstem Coupling Matrix

The control system coupling matrix is a 3 × 3 matrix

which operates on the vehicle rate variables resulting

from the combination of one or more controllers. If the

control system coupling matrix contains no diagonal terms

then it is also the gyroscopic coupling matrix.

Control System Input Matrix

A 3 x n matrix which results from any arrangement of

terms of one or more controllers in which the control

system input matrix operates on the control syste.m input

variable s,
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Control System Input Variables

Any controller may have one or more degrees of freedom

which may be considered the input variables of the con-

troller, i.e. with wheels, the input variables are angular

acceleration of the wheels. With pure gyro systems the

input variables are precession rates. A combination of

two or more controllers give many degrees of freedom

which represent the control system input variables.

Controller

A momentum exchange device which is capable of applying

control moments to the spacecraft. A controller in this

report is considered to be a rotating rigid body. One or

more controllers are combined to form a complete con-

trol system.

Gyroscopic Couplin_ Matrix

Defined as the control system coupling matrix with all

diagonal elements replaced by zeros.

Guidance

The guidance of a vehicle is defined as the operation of

controlling the thrust vectors acting on a spacecraft, such

that, a desired trajectory is followed. Guidance of a

spacecraft is required during thrusting and possibly during

re-entry if the aerodynamic lift of the vehicle can be con-

trolled.

Inertial Guidance Measurement Unit

The inertial guidance measurement unit is defined as an

assemblage of instrumentation to determine the specific

force vectors acting on the spacecraft suitable for per-

forming the guidance and navigation function.
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Momentum Exchange

A momentum exchange control system is defined as a de-

vice which is capable of providing control torques to a

spacecraft by a time rate of change in angular momentum

within the device. Consequently, the total mass and angu-

lar momentum of the combined vehicle and control system

remains constant.

Momentum Transfer

A momentum transfer control system is defined as a de-

vice which is capable of providing control torques to.a

spacecraft by ejecting mass from the spacecraft and

creating a force-impulse normal to a lever arm' directed

to the center of gravity of the spacecraft.

Navigation

Navigation of a spacecraft .isdefined as the operation of

determination of the position and velocity (or position and

velocity deviations), and computation of the guidance com-

mands necessary to arrive at the desired destinati.on.

Rest Point

A spacecraft rest point is the attitude which results in

zero applied torque, and at which attitude the spacecraft

exhibits .stable static stabilit.ycharacteristics.

Passive Control

Passive control of a spacecraft is defined as the operation

of controlling the spacecraft purely_by means of an exist-

ing stabilizing torque which acts on the spacecraft. At-

titude control is achieved by dissipating energy and the

system provides inherent sensing.

.Pointing Accuracy

The pointing accuracy is defined as the maximum deviation
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of the output of a closed loop with reference to a desired

output when no disturbances are admitted to the loop.

Pointing accuracy is a measure of the stability of a

spacecraft controlled by an active control system.

Primary Control Matrix

The primary control matrix is a result of pre-multiplying

the control logic matrix by the control system input ma-

trix. The primary control matrix is then a 3 x 3 matrix

and is diagonal or nearly diagonal for the range of control

system input variables chosen to define the control logic

matrix.

Pr'im_rv _nnf-r, nl V_'ri_hl_¢_
........ |r .........

Three variables which give non-interacting (or nearly

non-interacting) control in roll, pitch, and yaw.

Rest Position

For a spacecraft in an environment in any time invariant

situation, there exists a spacial orientation at which the

external moments acting on the spacecraft exactly cancel

and no moment acts on the vehicle.

Semi-Passive Control

Semi-passive control of a spacecraft is defined as passive

control systems which increase their damping properties

by introducing gyroscopic effects, or those systems which

possess no static stability but have strong damping charac-

teristics such as spin stabilized vehicles.

Saturate <and desaturate)

Any momentum exchange type control system will have

an initial angular momentum disposition and a maximum

angular momentum storage capability for a particular

control axis. Saturation is defined as the percent change

in the angular momentum of a 15articular axis when the
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vehicle is non-rotating with respect to the reference frame.

Desaturation is defined as providing an external moment

to the spacecraft which tends to return the momentum

exchange control system to its initial disposition.

Vehicle Attitude Rate Variables

The vehicle attitude rate variables are the roll, pitch,

and yaw rates of the vehicle with respect to inertial

space.
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B. 1

FiGure

B. 1

B. 2

B. 3

B. 4

B. 5

B. 6

B. 7

B. 8

B. 9

B. 10

B. 11

B. 12

B. 13

APPENDIX B

COORDINATE REFERENCE FRAMES

Summary of Coordinate Reference Frames Defined

Symbol

II

H

B

Title

¢,0,_

I

VR

V

A

GU

GIM

R

III

E

K

P

Heliocentric Inertial Reference Frame

Heliocentric Orbital Plane Reference Frame

Heliocentric Orbital Position Reference

Frames

Vehicle-Centered Solar Orbital Reference

Frame

Vehicle-Centered Inertial Reference Frame

Vehicle-Centered Velocity Reference Frame

Vehicle-Centered Vehicle Reference Frame

Vehicle-Centered Principal Axis Frame

Vehicle-Centered Gyro Case Axis Reference

Frame

Vehicle-Centered Gyro Gimbal Axis Reference

Frame

Vehicle-Centered Gyro Rotor Axis Reference

Frame

Geocentric Inertial Non-rotating Reference

Frame, and

Geocentric Earth Reference Frame

Geocentric Orbital Plane Reference Frame,

and Geocentric Orbital Position Reference

Frame
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B. 14 G Geocentric Longitude-Latitude Grid Reference

Frame

B. 15 S Geocentric Solar Reference Frame

B. 16 O Vehiele-Centered Planet Or_bital Reference

Frame

An attempt has been made to keep the defined reference

frames identical with those given by Ogletree in reference 21.

For reference frames centered at a planet of the solar system

other than earth, it is considered that Figures B. 12 and B. 16

can be applied with a suitable subscript denoting the planet con-

cerned.
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HELIOCENTRIC INERTIAL REFERENCE FRAME 11"

Zx

Y=

xx
T

VERNAL EQUINOX

FIGURE B. I An illustration of an inettial fixed frame assuming the sun as o fixed point in space.
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HELIOCENTRIC ORBITAL PLANE REFERENCE
FRAME H

AXIS X H PASSES THROUGH PERIHELION OF SPACECRAFT ORBIT

AS
PROJECTED ONCELESTIAL SPHERE

ZTr

ZH

LINE OF
NODES

PLANE

VERNAL
EQUINOX

O <i._rr

ASCENDING NODE
OF ORBITAL PATH

PROJECTION OF
ORBIT OF EARTH ON
CELESTIAL SPHERE

(coJC,_"_,- S(_S,_'_.Ci)(C_S_, + S(_C_.Ci)(S(#Siq

QI.I,'E= I(-S (_c &'),- C_S,Q, Ci)(- SoJS,t'_,+ CoJC,t'},CI) (SiCk) I

L sis -s,c c,.j

i

FIGURE B. 2 An illustration of an Orbital Plane Reference Frame defined as Three Rotations from the
Heliocentric inertial Reference Frame.
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HELIOCENTRIC ORBITAL POSITION REFERENCE

FRAME B

ZHtZB

OF
SPACECRAFT

SUN(

PERIHELI(

SPACECRAFT

XH

YH

QBH
r+C°sT/'l" Sin _7 il: I --Sin,r/+Cos,r/
L o o

FIGURE B. 3 An illustration of a Heliocentric Orbitol PositionReferenc_ Frame defined by a Sin¢jle
Rotation from the Heliocentric Orbital Plane Reference Frame.
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VEHICLE-CENTERED SOLAR ORBITAL REFERENCE

FRAME (THREE CASES) _, 8, El

ZB

YB

[-, o o]
--IO+, o I

%e Lo o-,j I'l: O0
O8e 0-1

I-o+,o_
= I o o-,I

%" L-,o oj

i

FIGURE B. 4 An Illustration of a Vehicle-Centered Orbital Reference Frame as related to the Heliocentric

Orbital Position Reference Frame.
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VEHICLE-CENTERED VEHICLE REFERENCE FRAME _"

SHOWN RELATIVE TO VEHICLE-CENTERED INERTIAL

REFERENCE FRAME ;"

Xv Y=

X! .....

Yv

E

+Zv Zz

INTERMEDIATE

AXISYu

2.

FRAME I IS NON-ROTATING WITH RESPECT TO FIXED STARS, I.E.WITH RESPECT TO

FRAME X.

DIRECTIONS OF X Z ,YI ,Zlr ARE DEFINED TO COINCIDE WITH Xo,Y O ,Z O AT TIME

ZERO FOR ANY PARTICULAR SET OF INITIAL CONOITIONS.

3. ORDER OF ROTATIONS TO PLACE FRAME Z IN COINCIDENCE WITH FRAME+_[.

A. ROTATE ABOUT AXIS Z Z THROUSH ANGLE _t.

B. ROTATE ABOUT Axis Y_v THROUGH ANBLE 8.

C. ROTATE ABOUTAXlS X V THROUOH ANGLE _.

FIGURE B-5 An illustration of relation between the Vehicle-Centered Inertial Reference Frame and

the Vehicle-Centered Vehicle Reference Frame.
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VEHICLE-CENTERED VELOCITY-REFERENCE

FRAME VR

ZB

Ye

/ _ v.._ ,;//jYvR (ALONG VEHICLE
/'..... -- _ X¢_ "V" _ INSTANTANEOUS

_ORBIT _ // AZO VELOCITY IN X,J.Y.L

\z_, -'_x.

F+CAz° + SAz° 1
QVR'* = L-So AZO+CAzO0

FIGURE B.6 An illustration of o Vehicle-Centered Velocity-Reference Frame, Angle Azo is

¢otation about Z to place FrameI in coincidence with Frame VR.
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VEHICLE-CENTERED VEHICLE REFERENCE FRAME 1T

/
Axv>

Zv

DIRECTION OF

DmECTORBIT_AZ_
_/_ INTERMEDIATE

/ _ .i ¥ AXISYH

_Yv

• MASS CENTER OF VEHICLE

ORDEROF ROTATIONSTOPLACEFRAME(_ IN COINCIDENCEWITHFRAME'_.

L ROTATE ABOUTAXIS Z(jr) THROUGHANeLE AZ_.

2. ROTATE ABOUTAXIS'YN THROUGHANGLE AyN.

3. ROTATEASOUTAXISX v THROUGHANGLE AXV.

• SEEA_.orx CFORQv_-

FIGURE B. 7 An illustration of a Vehicle-Centered Vehicle ReferenceFrame as defined by three
rotations from the Vehicle-Centered Orbital Reference Frame.
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VEHICLE-CENTERED PRINCIPAL AXIS FRAME A

XA Yv _ AZV,!

TYXY
Azv, i

__II_//'//j__SS CENTER OF S"-PA_E_RAFT

Ax A ___-Ayy

ZA I ZV

ORDER OF ROTATIONS TO PLACE FRAME V IN COINCIDENCE WITH FRAME A.

I, ROTATE ABOUT AXIS Z v THROUGH ANGLE AZV, I.

2. ROTATE ABOUT AXIS Yy THROUGH ANGLE Ayy.

3. ROTATE ABOUT AXIS X A THROUOH ANGLE AXA.

SEE APPENOIX C FOR QAV"

FIGURE B.8 An illusfraflon of o Vehicle-Centered Principol Axis Frome os defined by three rototions

from the Vehicle-Centered Vehicle Reference Frome.
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VEHICLE-CENTERED GYRO CASE AXIS REFERENCE

FRAME GU

X

_yeu /_---- --- ------- "MASS CENTER OF VEHICLE.,

7'

ORDER OF ROTATIONS TO PLACE FRAME "0" IN COINCIDENCE WITH FRAME GU.

|. ROTATE ABOUT AXIS Z v THROUGH ANGLE _'.

2. ROTATE ABOUT AXIS Yu THROUGH _NGLE Ayu.

3. ROTATE ABOUT XI5 XGU THROUGH ANGLE AX,GU,

SEE APPENDIX C FOR QGU,V'

[iJ I x°lw'mv, au _ JCGu = JCY O0

0 J

FIGURE B.9 An illustration of a Vehlcle-Centered Gym CoseAxisReferenceFmme asdefined bythree
rotations from the Vehicle-Centered VehicleReference Frame.
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VEHICLE-CENTERED GYRO GIMBAL AXIS REFERENCE

FRAME GIM

,_u

¥QIM
_,YGIM

X_MZm_M -- d OF SPACECRAFTGYRO GIMBAL SA IS ALONG YGmM"

GYRO GIMBAL IA IS ALONG Zel M,

GYRO GIMBAL OA IS ALONG Xet M.

ZGOM Zeu

To PLACEFRAMEGU IN COINCIDENCEWITHFRAMEGIM.

I. ROTATE ABOUTAxIS XGu THROUGHANGLE G.

- Ill °:z]WGU,GIM : J¢,GIM : JgY

O Jg

_GIM,GU : _o o_+cos ¢x +sin

-sin a -Fcosa._J

FIGURE B.IO An illustration of a Vehicle-Centered GyroGlmbol Axis Reference Frame as defined by a
singlemtatlon from the Vehicle-Centered'GyroCaseAxisReference Frame.
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i ,, i , i

VEHICLE-CENTERED GYRO ROTOR AXIS REFERENCE

FRAME R

XR YGIM

TO PLACE FRAME GIM iN COINCIDENCE WITH FRAME R

I. ROTATE ABOUT AXIS YGIM THROUGH ANeLE _.

ZR

WWM,R : JrR = J0 0

JrY 0

0 Jr

IQR,GIM = I

L+sin_ 0 COS_J

FIGURE B.II An illustration of aVehicle-Centered Gyro RotorAxisReference Frame as defined by a

single rotation from the Vehicle-Centered Gym Gimbol Axis Reference Frame.
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GEOCENTRIC INERTIAL

FRAME Trr

FRAME E

0 ° LONGITt

REFERENCE MERIDIAN

NON-ROTATING REFERENCE

AND GEOCENTRIC EARTH REFERENCE

EQUATORIAL
POLAR AXIS PLANE

/
/

X_r

TO
FIRST POINT
IN ARIES

XE

F CAz_ SAzz !1
QE,._ : L S_zz CAztO Wwr,e :

E°l0 =

211'RAD
86,164 SEC

r.292115 XI0 -5 RAD

FIGURE B'12 An illustration of the relations between o Geocentric Inertial Non-Rotating Reference

Frame and o Geocentric Earth Reference Frame which rotates at Earth Rate.
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GEOCENTRIC ORBITAL PLANE REFERENCE FRAME K

AND GEOCENTRIC ORBITAL POSITION REFERENCE

FRAME P w=,t
AXIS

;PACECRAFT
POSITION IN ORBIT

Xp

ZK IZp

_KP

I

XZ
!

EOUMOR

/
/

/

NODE
OF OflglTAL PATH

GROUND TRACK

'W_r,K ORBITAL MOTION

_=_'--PRECESSION OF ORBITAL PLANE

ABOUT EARTH'S POLAR AXIS

)_K : -(WxK -FWzE)(T-T O) + _'K_.]O

T = INITIAL VALUE OF TIME

X.vlo..J = INITIAL LONGITUDE OF ASCENDING NODE OF ORBIT

FIGURE B.13 An illustration of the relaticmsbetween a Geocentric Orbital Plane ondo Geocentric

Orbital Position Reference Frame
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GEOCENTRIC LONGITUDE-LATITUDE GRID

REFERENCE FRAME G

LOCAL MERIDIAN PLANE-_
LON

ORBITAL PATH
(NOT IN LOCAL MERIDIAN

PLANE, IN GENERAL)

m

LAT

EQUATORIAL

LON.
\

\
\

,%

POSITION IN ORBIT

Rp IS GEOCENTRIC RADIUS

VECTOR TO SPACECRAFT

PGE " I CLATCLoN CLAT S LON SL;T_

-SLoN CLON
SLATCLON -SLATCLON CLATJ

Y IS IN DIRECTION OF

WZE ",_ Rp

ill ii

FIGURE B.14 An illustrotlon of o Geocentric Longitude-Lofitude Grid Referenc_ Frome.
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GEOCENTRIC SOLAR REFERENCE FRAME S

WILT.,E

/_s =FsJo + WIs(T-To)

Fs_o = INITIAL VALUE OF/_s

FIGURE B.15 An IIIustrotion of o Geocentric Solor Reference Frome.
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VEHICLE-CENTERED PLANET ORBITAL REFERENCE

FRAME O

W_E

II

//

I
// I I

// I I
// I I

//// t

//

WKO

Zo

J
/

POSITION
IN ORBIT

(PERIGEE

OF ORBIT)

EARTH'S EQUATOR

ORBITAL MOTION

WKo_ WKp

_O=Yp

A A

ZoNXp

QoP =
o ;j

FIGURE B.16 An illustration ofa Vehicle-CenteredOrbital ReferenceFrame.
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APPENDIX C

COORDINATE TRANSFORMATIONS

C. 1 Coordinate Transformations Between Reference Frames

Relating to Interplanetary Space Analysis

(Refer to Appendix B for definitions of coordinate frames)

QBH

(-S _C fl- C _SflC i)

m

(C_C _2- S _S _2C i) (C ¢oS _2 + S ¢oC _2C i) S_Si

(-S o_SD + C ¢oC _2C i)

SiS_ -SiCgl Ci

D g

Cn Sn 0

-Sn Cn 0

0 0 1

SiC_

(Eq. C. 1. 1)

(Eq. C. 1.2)

QCB

-i 0 0

0 1 0

0 0 -i

See Figure B. 4 for

Q0B and Q@B

(Eq. C. 1.3)

QVR, ¢ =

m

CAzo SAzo

-SAzo CAzo

0 0

a

0

0

1 (Eq. C. 1.4)
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QGIM, GU to
I
I 0
t..

0

+C_

- S_

0

+Ca (Eq. C. 1.8)

QR, GIM

_c,_

0

0

1

0

-s_

0

cB (Eq. C. 1. 9)

QR, GU

m

cB

0

sB

SaS_

Ca

-SaCB

S_

Ca C8 (Eq. C. 1. 10)

QvI

p.

CO C_

-c¢se + scsoc_

s¢se+c¢sec,

COS_

c¢s¢ + s¢sos,

-s¢c_ + c¢sos,

s¢co

c¢co_

(Eq. C. 1. 11)

257



TRANSFORMATIONS FOR SPECIAL CASE

AyU =, 0 AX, GU = 0 QAV = I

QGU, A

C7

= -$7

0

$7 0

C7 0

0 1

(Eq. C. i. 12)

QGIM, A -STCa

$7

CaC7

-SAC7

0

SoL

C_

m

(Eq. C. I. 13)

QRA =

CSCT- SaS_S7

-C_$7

S_ C7 + S_ C/3S7

CB S7 + S_ SB C7

C_C7

SBST- sac_c7

Sol

(Eq. C. i. 14)
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C. 2 Coordinate Transformations Between Reference Frames

Relating to Planetary Space Analysis

QE, III

CAzI SAzI 0

-SAzI CAz1 0

0 0 1

(Eq. C. 2. 1)

QKE

_"KC_K-S_KCAKS_

(-S_ K Ck K - C_uK CA K SkI_i

' SAK SkK_

_. CUKSk K + Sp K CA K Ckto'

_(-_._ +c,,Kc_ c_)

-SAK CX K .

SP K SA K

Cp K SAK

CA K (Eq. C. 2.2)

QPK

m

C_K P SPK P 0

-SPK P CPK P 0

0 0 1 (Eq. C. 2.3)
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QGE

C LAT C LON

-S LON

S LAT C LON

C LAT S LON

C LON

-S LAT S LON
C LATJ

(Eq. C. 2.4)

QS, III

CP s

-Sp s

0

SP s CA s

C_ s CA s

-SA
S

CP s SA s

CA
S

I

(Eq. C. 2. 5)

QOP

i

0 1

0 0

-i 0

w

0

-i

0 (Eq. C. 2. 6)

QOE -SA K Sk K

(- C.p CXK + Spp CAKSXK_

S_p Sk K + C_p CA K CXF_

SA K Ck K

(-C_p SXK - S_p CAK C;kF_

Cgp SA K

-CA K

-Spp SA K
(Eq. C. 2. 7)
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C. 3 CoordiDaSe Transformations Relating to the Definition of

Particular Controllers

TWO-DEGREE- OF- FREEDOM CONTROLLERS

QGU i, V

m
m

1 0 0

0 i 0

0 0 1

n

_v_ _!_ _X_

l___vq "_'_(Eq. C. 3. 1)

QGU 2, V

mi

1 0 0

0 -I 0

0 0 1
D

v
_v

(Eq. C. 3. 2)

QGU 3, V

l

0 -1 0

1 0 0

0 0 1

X_u

(Eq. C. 3. 3)

_v

QGU 4, V

m °

0 1 0

-1 0 0

0 0 1

_V

(Eq. C. 3.4)
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QGU 7, V

-- 1 4-3
2 2

2 2

0

0 0 1

..- X_

_._

(Eq. C. 3. 5)

QGUS, V -e
k o l I I _V,,,o lJ "_'_ _,,

(Eq. C. 3. 6)

SINGLE - DEGREE- OF- FREEDOM CONTROLLERS

QGU1, V

QGU 2, V

m

1

0

-1

0

o o1

0

0 0

-1

0 1

_V

,-_'v (Eq. C. 3. 8)
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QGU3, V

0

0

0

i

1

0

-_v (Eq. C. 3. 9)

QGU4, V

0

= -1

0
i

0

0

-1-

0

0
m

Y¢

(Eq. C. 3. i0)

QGU 5, V

QGU6, V

m

= 0

-1
m

0

0

= 0

-1
B

-1

0

0

+1

0

0

+1

0
m

0

-1

0
u

¥×6u

r_u
(Eq. C. 3. 11)

U

6U

%

_ (Eq. C. 3. 12)

QGU7, V +C 7 0

-$7 o

+1

0

0

"_'_ "_v

(Eq. C. 3. 13)
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QGU8, V

m

0

+ $7 o

0

+C7 o

+$7 o

,m

+1

0

0

q. C. 3.14)

QGU 9, V

m

-1

= 0

0

m

-C_ o

0

0

-Sa
0

+Ca
O

_v (Eq, C, 3, 15)

QGU 10, V

m

-1

= 0

0
m

0 0

+Sa o

+ C_ o

(Eq. C. 3. 16)
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APPENDIX D

D. 1 Relative Velocities

WII, H = 0

WHB

Assuming Orbital Elements are Constant

(Eq. D. 1. 1)

r V

where _- 2
r

r

V

of the order of 1 degree/day.

(Eq. D. 1.2)

= r_Hius of perihelion of spacecraft orbit

= velocity of spacecraft at perihelion

r = radius of spacecraft from sun

Wcv

WIV

= 0

1

= 0

0
D

1

= 0

0
m

m

0 - SAyN

CAxv SAxv CAyN

-SAxv CAxv CAyN"

c¢

-S¢

-SO

I

s¢c0 i
I

_,;,j
m

(Eq. D. 1.3)

m

AXV

_YN

-_ZO-

(Eq. D. 1.4)

(Eq. D. 1. 5)
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WV, GU

WGU, GIM

WGIM, R

1

= 0

0

0

CAxG U

-SAxG U

"t
0

0
P

"o]

0
I

m

m

0

m

- SAyN

SAx GU CAyu

CAxG U CAyu
q

l*

"_X,GU

Ayu

(Eq. D. 1. 6)

(Eq. D. 1. 7)

(Eq. D. 1. 8)

Wva, ¢

Will, E

= 0

AZO.

0

0

2_r

86,164

0

7. 292115 x i0

(Eq. D. i. 9)

-5
rad/sec

(Eq. D. 1. 10)

WKE = 0 Assuming Orbital Elements are Constant

(Eq. D. 1. 11)
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WpK

0

0

(Eq. D. 1. 12)

Wop = 0 (Eq. D. 1. 13)

WIII, S

0

0

27r Rad

_365.25 days
(Eq. D. 1. 14)
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D. 2 Approximate Relative Velocities

Valid when the frames nearly coincide or when angular

velocity is purely about a single axis. The subscript A may be

substituted for V for the case where QVA = I.

W_bv = AyN

AZO (Eq. D. 2. I)

WIV

p :-

_¢
u

[_'3
/H

which is further |r I

L:Jdefined as a column

matrix of vehicle

attitude rate variables

(Eq. D. 2.2)

Wv, GU

D o

AX, GU

Ayu

3'
(Eq. D. 2.3)

WV, GU

for the particular problem

where the case has only one

degree of freedom.

(Eq. D. 2.4)

Wv, GIM
---- - 0

L0J
for the particular problem

where _ >>

(Eq. D. 2.5)
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WVR

for the particular problem where
>>_ and/3 >>_ which assumes the

rotor spin as large.

(Eq. D. 2.6)
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D. 3 Relative Velocities for Controller i

For the special case where the controller is in position

i, i.e. AX, GU = 0, Ayu = 0, and 7is a control variable ,

the following relative velocities apply.
a

• 0

WV, GU = 0

(Eq. D. 3. i)

WV, GIM

WVR =

m

_C_ - 4

+_S_

+

(Eq. D. 3.2)

(Eq. D. 3.3)

WIR =

p _C[3C3'- S_13S3'_: + q C]3S3' + SaS/_CT_!- r i_aS/_ "- _'CaSI3 + _

-p CaS_/+ q CoC_/+ rSa + 7Sa +/_

p S_C3'. +SaCI3ST_ + q <SBS7 - SaC'/3CT_..+ rCaCl3 + _Ca4_/3 ÷ _SB

(Eq. D. 3.4)

WI, GU

D

p C_ + q S7

-p S7 + q C7

r+7
(Eq. D. 3. 5)
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Wl, GIM

m

pCT+qS?+

(-pST÷qCT) Ca÷ (r ÷_)Sa

(,_ s_ no,)s_÷(r ÷_)oo
(Eq. D. 3.6)
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D. 4

WIR =

Time Rate of Change of Angular Velocities

For the case where _ >>_, _, p, _ and ;. Controller

{P (- Sf_C_/- SaCf_Sv) + q(- Sf_Sv+ SaCf_C _) - r CaCf_- _CaC f_- _S_ }

p (c _c _g- s_s _ - q(c _s _{÷ s_c _ + _ c _$ +_s_ + _c _r

{p (C/3C_- SaSf_S_/)+ q(CflS%,+SaS/_C_/)-r CaS/_- _CaSf_÷_f_ }/}

_Q

also /3= 0

(Eq.
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APPENDIX E

EXACT MOMENT EQUATIONS FOR

CASE r GIMBAL AND ROTOR TERMS

In accordance with the definition of the GU, the GIM,

and the R coordinate reference frames of Appendix B, the case

containing a gimbaled rotor is chosen so that the spin reference

axis of the rotor is aligned along th_ positive y axis of the V frame.

This gyro position is also called gyro 1. It is assumed that the

V frame (vehicle-centered vehicle reference frame} and the

Equation E. 3. 1 is applicable to problems concerning

inertia reaction wheels, but it is not particularly suited for

wheels. Accordingly, section F. 2 of Appendix F is a derivation

of an equation specifically for inertia reaction wheels.
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APPENDIX E

EXACT EQUATIONS FOR CASE, GIMBAL, AND ROTOR TERMS

E. 1 Case Terms

From Equation 2. 3. 6

Mcase i_ A QA, GU c ]GU

+ W-S_'_" _A, GU HcJ GU
(Eq. E. i. i)

Let QVA = I

QA, GU =

WIA =

WA, GU =

n

CT

ST

0

P

q

r
m --

0

01

m

-S? 0

•C'y 0

0 1

and V_iA

_0

This assumes

Controller

Position 1

(Eq. E. i. 2)

HcJ GU
= J

C WI, GU

(Eq. E. 1.3).
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I_c-] GU c QGU, A IA + WGU, A'_W + WA, G

(Eq. E. 1.4)

Substituting these matrices and performing the indicated
operations gives for the contribution of the case terms the
following moments.
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E. 2 Gimbal Terms

By an identical procedure as the previous section, the

gimbal terms are found to be the following.
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The preceding is adequate when two of the three attitude

angles are small, otherwise we must substitute

q = 0C¢- $S¢C0

r = _c¢c0- $s¢
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E. 3 Rotor Terms

By an identical procedure as in section E. 1 the exact

rotor terms for a rotor of a controller in position 1 are found°

Define

Jrd

J
rp

-- dimetrical moment of inertia of rotor

= polar moment of inertia of rotor

The following equations are adequate when two of the

three attitude angles are small. Otherwise we must substitute

q = eC_ - _S¢CO

4b

r = _c¢co - os¢
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APPENDIX F

APPROXIMATE EQUATIONS FOR CONTROLLERS

F. 1 Arbitrary Controller

Using Equation 2.3.8 and assuming the angular momentum
(33)

of the rotor is predominately along the spin axis of the rotor,

one can derive the approximate equation

MCSJ A GIM

where

(Eq. F. 1.2)

Now from Appendix D

(Eq. F. 1.3)

QA, GIM = QA, GU QGU, GIM (Eq. F. 1.4)

and can be found from the

coordinate transformations

of Appendix C. 1

WA, GIM = QGIM, GU WA, GU ÷ WGU, GIM

(Eq.

and can likewise be found

using matrices of Appendix C

and Appendix D.

F. 1.5)
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Note that equation F. I. 1 is a sum of two parts. The first

of these parts will form the primary control matrix and the

second part will form the gyroscopic coupling matrix of the final

equation in a particular system using one or more of the control-

lers.

After performing the indicated operations, the equation for

a single controller with an arbitrary ease position is given by the

following equat ion.
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It is not considered desirable to put the preceding equation

in matrix form as there would be no simplification. However,

upon use of the preceding equation in a particular controller

position, the time rates of the ease angles will usually vanish and

considerable simplification then results. At this point it is de-

sirable to put the remaining terms in matrix form to assist their

summation with terms from other controllers with the same

control system input variables.
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F. 2 Equations for Inertia Wheels

Unfortunately equation F. 1.6 cannot be used for the case

of inertia reaction wheels because it has been assumed in that

section that the angular velocity of the controller is a large value

and is constant. Equation E. 3. 1 can be used for the X wheel and

the Y wheel or any other wheel that lies in the x-y principal axis

frame or for a pure z-aligned wheel. For the perfectly arbitrary

inertia reaction wheel it may be desirable to list here a general

expression for the moments. If we consider that the wheels are

rigidly mounted in the spacecraft then equation 2.3.8 can be used

and is written as follows.

_McsJ = _(QAR rHrj_ + WAR_HrJ _]

+WIA'_ QAR HrJ R_i
(Eq. F. 2. 1)

Or, the same equation written with respect to the case frame is

GU

+ WA, Gu_Hr

+ WIA_'QA, GU HrJ GU_ i

Since the case holding the wheel is rigidly attached to the space-

craft WA,GU' = 0

= A, GU HrJ
Mcs-J A i=l GU

+ WIA* QA, GU HrJ

(Eq. F. 2.2)
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[l

The most difficult part of this derivation is that of finding

A consiclerable simplification of the algebra results

GU

if we agree in this section to let

a b
QGU, A = d e f

r

Lg m

m

c

n

(Eq. F. 2. 3)

Where the elements of equation F. 2. 3 are given by equation C. 1.7

for the case where the vehicle reference frame is identical with

the principle axis frame. Then it is determined that the angular

momentum with respect to the case frame is as follows.

QGU, R WGIM, R
A WIA + Jr] GUtirJ GU

%J GU

where

Note that

= Jr_ GU QGU,

JX a

= J d
P

J X g

Jr JR =

HrJ = Jr

GU

JX b

Jpe

JX m

J
X

0

0

m

JGU QGU,

I

JX c !" p]

JPf Lq_iJX n

m

0 0

Jp 0 =J

i

0 JX

o

AWIA + Jr [G- U

-_ -'l
0

.!
+ Jp_

_oJ

(Eq. F. 2.4)

(Eq. F. 2. 5)

Q

QGU, R WGIM, R
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i m

Jx a JX b JX c

I_rJ GU = ] JP d Jpe Jpf

!

Jx g JX m JX n -

m

t... _

+

0

jp "

0

(Eq. F. 2.6)

Following through the indicated operations by substituting

the above matrices into equation F. 2.2 gives the following equa-

tion for the moments contributed by the inertia reaction wheels

of an attitude control system.

ldj=_ p_" e +Jp_

MCSJ A i=l f

÷

0

-f

e

N fQ A I Jxa Jxb
, GU Jp d Jp e

i=l

L Jx g JX m

f

0

-d

I

-e

d

0

JX c

Jpf

JX m

P

q

r

q

r

÷ WIA:_QA, GU

B

JX a JX b JX c

Jp d Jp e Jp f

JX g JX m JX n
D w

ql

rl

(Eq. F. 2. 7}

Equation F. 2. 7 has been written in two parts because it is

convenient to lump the second part with the vehicle since that part

is not dependent on the control variable 8. The second part relates
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to the moments contributed to the vehicle by the wheels acting as

inert masses constrained to move with the vehicle. Therefore the

equation is written as the following.

N d 0 f -e p

A '= -d 0

where d =

e --

1

(Eq. F. 2.8)

-CAx, GU $7 + S_AX, GU SAyu CT

CAx, GU C7 + SAx, GU SAyu $7

f = SAx, GU CAyu

from equation F. 2. 3 and C. I. 7

d e f

For an X-wheel 1 0 0

Y-wheel 0 1 0

Z-wheel 0 0 1

For an X-wheel

_MX-wheelJA

0

0

0 0

0 0

0 -Jp_

0

0

(Eq. F. 2. 9)
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For a Y-wheel

_My-wheel JA

m

0

= Jp3

0

m

r

I o
!

!

+' 0
I

-Jp_ P

0

0

(Eq. F. 2. t0)

For a Z-wheel

_Mz_whee =
UA

m

0

0 +

Jp_°

D
a

0

-Jp_

0

0

0

m

0 p

0 q

0 r

(Eq. F. 2. 11)
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F. 3 Equations for a Particular Three Degree-of-Freedom
Controller

Only one eont['oller is considered wherein three degrees-

of-freedom of the. rotor are allowed. This controller is aligned

with its spin reference a_is along the positive _-axis of the

vehicle-centered principal axis frame, mhu._ in equation [_. 3. 1

it we let _' = 71-90 ° an,t .T = t), the !'ollowiiw equation is obtained

_- M(3- 3- 3)j = Jrp
A

CaC'_ -S_'Ca -C%,Sa

S%,Ca CaC'Y -S_Sa

So 0 Ca

0 Sa -CaS'y

-Sa 0 CaCT

S'yCa -CTCa 0

,m

(Eq. F. 3. 1)
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F. 4 Equations for Particular Two-Degree-of-Freedom

Controllers

In the syzlthesis of the moment equations for those control

systems that are composed of several controllers of the two-

degree-of-freedom type, it is convenient to have the simplified

moment equations of each controller. Thus the controllers de-

fined by the following angles are presented. See Figure B. 9 and

paragraphs A-4 and C-3.

TABLE F. 4

POSITION ANGLES FOR TDF CONTROLLERS

TDF CONTROLLER
AX, GU

CASE ANGLES

Ayu i

0

0

0

0

O"

0

3'

0 ÷_

+ 180 ° + _,

- 90 ° + _/

+ 90 ° + 3,

4-120 ° 4-._

- 120 ° 4-3,

If the above reference angles are substituted into equation

F. i. 6 the following equations are obtained. Note that 3' is a case

angle retained as a control input variable.
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F. 5 Equations for Particular Single- Degree- of- Freedom
C ont r oller s

In the synthesis of the moment equations for those

control systems that are composed of several controllers of the

single-degree-of-freedom type, it is convenient to have avail-

able the simplified equations of each controller. The following

table of angles define the orientation of the case relative to the

vehicle centered principal axis frame. See Figure B. 9.

TABLE F. 5

POSITION ANGLES FOR SDF CONTROLLERS

_D-_' C UN 'I'I-_{3LLE_

1

2

3

4

5

6

7

8

9

10

• CASE ANGLES

AX, GU

0

0

0

0

+90 °

-90 °

0

0

O

O

Ayu

0

0

-90 °

+90 °

0

0

-90 °

-90 °

0

0

,y

0

±180 °

-90 °

+90 °

-90 °

+90 °

+120 °

-120 °

±180 °

±180 °
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SINGLE - DEGREE- OF- FREEDOM CONTROLLERS
(Subscripts of Variables Omitted)*

Controller i

:Jp l p
MSDF!] A [+_C_ + pC

(Eq, F, 5, i)

Controller 2

_MsDF
ps_ +_s_ I
p Ca + _CaJ

(Eq. F. 5.2)

Controller 3

_MsDF
_JA

= Jp_ (r + a) Ca |
!

pSa- qC_J

(Eq. F. 5. 3)

Controller 4

= Jp_
MSDF 4J A (2_- r) sa a](3- r) Ca

pSa+ qC

(Eq. F. 5.4)

Controller 5

_MsDF
-JA =Jp_ I(q - &) a]

Co,

pCa- rS

L(q- _)Sa J

(Eq. F. 5. 5)
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.Controller 6

_MsDF
6JA

(q + 4) C_

pCa - r Ss i
I

(q + _) Sa_j

(Eq. F. 5. 6)

Controller 7

_s._ _JA=_} (r + 4) S (30 ° + _) -]J(r + _) C(30 °+ _)

pS(30 ° * s)+ qC(30 ° ÷ a)

Controller 8

_MsDF
8JA

=Jp_

(Eq. F. 5.7)

(r ÷ 4) S(30 °- s) 1
!(r * 4) C(30 °- s)

pS(30 °- q)-qC(30 °- s)

(Eq. F. 5. 8)

Controller 9

_MsDF I

9! A =JP_

i rC(s o- a) - qS(s ° s) ,

1 i+(p - s) S(s ° - _)

- (p _) C ('_o c_) _.

(Eq. F. 5. 9)

Controller 10

_MsDF =Jp_
ii qS(so + s) +rC(s °

( _- p) S(s o ÷ a)

( _- p) C(a o+ _)

+ _)-,

J
(Eq. F. 5. 10)
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# Note that the equations of this seetion have been written in

the form of a column vector because they are simple expres-

sions with only a few terms. When a number of the above

equations are added to form a complete control system, the

form of Equation 3. 2. 3 is recommended.
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APPENDIX G

EQUATIONS FOR PARTICULAR MOMENTUM EXCHANGE
ATTITUDE CONTROL SYSTEMS

G. 1 INTRODUCTION

A spacecraft attitude control system of the momentum

exchange type will usually contain a number of momentum ele-

ments either of the inertia reaction wheel or of the gyro type.

In this thesis inertia reaction wheels are referred to as simply

inertia wheels and have fixed axes of rotation whereas gyros

gyros used in inertial reference systems and in addition to its

spin motion a controller may have one or more degrees of

freedom. To determine the moment contributions of a particular

system consisting of several controllers or wheels as the case

may be, one needs only to sum the contributions of the individ-

ual controllers and wheels. A number of the more common

controllers are represented in Appendix F.

In this Appendix a number of control systems have been

defined by choosing various configurations of controllers. The

following table indicates the controllers which constitute the

system.
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The numbers in the parenthesis partially define the control

system by giving the controllers used for roll, pitch, and

yaw respectively. Thus the code following the Sun Pointing

System (0-34-34) indicates that there is no roll control;

controllers 3 and 4 control both pitch and yaw. A controller

used in only one axis indicates a single degree-of-freedom

controller, and for controllers 1 through 6 a controller used

for two axes indicates a two-degree-of-freedom controllers.

A controller used for three axes is a three-degree-of-freedom

controller.

These systems are adaptive versions of the (12-34-1234}

four controller system.
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Single Controller System (3-3-3)

Description of System:

Control Logic:

System consists of a number 3 con-

troller which has three degrees of

freedom. The rotor of the controller

is free to precess in two directions

plus the rotor is capable of being ac-

celerated about its axis of symmetry.

No control logic is required for the

single controller system since the

system contains three degrees of free-

dom, and the control system input ma-

trix can be nearly diagonalized by

suitable arrangement of the matrix.

to

+ _ gives roll to left

+ _ gives pitch nose down

+ _ gives yaw to left

Moment Contribution of Control System:

-+Ca C_, -S'y Ca

+S_,Ca +CaC?

+S_ 0

= Jp
M(3-3-3_ A

-- BU

-CvS_" __ I-S'ySa

m

F 0 +Sa

+JP_i -S_ 0

L+ CaS'y -C_C_, 0 j Lrj

(Eq. G. 2. 1)
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Sun Pointing System (0-34-34)

Description of System: This system is a special case of the

four controller system. The controllers

are TDF.

Control Logic:

_3

_4
. J

4-,v
'3

÷c_3

0 -1 .0

ii0 0

0 0

g_xr_ nltoh nn_ dnum
.... L- ................

gives yaw left

, }'lx

ny

rl z

Moment Contribution of Control System:

_M(0-34-34)_ A = 2Jp_

o o o

÷ 2Jp

0

-S_

÷ Ca S-Y3

+Sa

0

0

+SaSh' 3

-Ca

-C_Sq, 3

0

0

o

!

_ r I

, • i

i ,

Pl

ijl

I

(Eq. G. 2. 2)
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is

The equation written in terms of control input variables

0 0 0

0

0

L

+ Ca C_/3

0

0 +So_

-S_S_3 1+Ca

-C_S%

-Sa 0 0

+C_S_3 0
0

!

pl

r

(Eq. G. 2. 3)
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Sun Pointing System

Description of System:

(12-0-12)

This system is a special case of the

four controller system. The controllers

are TDF.

Control Logic:
"Y11 +i 0 0

°_11 0

.a2J 0

g

+_1 gives roll right
O

+ a 1 gives yaw left

I ]_y

_z

Moment Contribution of Control System:

-Ca C_, 1 0

M(12-0-12)_ A = 2Jp/_
0 0

0 0

+ 2Jp/_

0 Sa

-Sa 0

0 Ca S_ 1
m

- Sa S'y 1

0

-Ca

m

0

-C_S_ 1

D

• I
_Y I

o

P

q

r

(Eq. G. 2.4)
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The equation written in terms of input control variables is

).j = 2Jp_M(12-0-12 A

I C_ C71

0

0

0

-S_

0

0 SaS71

0 0

0 Co_

S_ 0

-C_S%

0

o

'Y1

0

O/

-!

(Eq. G. 2. 5)
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Four Controller System (12-34- 1234)

Description of System: Four TDF Controllers are mounted

in positions 1, 2, 3, and 4.

Control Logic:

3,1 + 1 0 0

3,2 - 1 0 0

3,3 0 - 1 0

3,4 0 + 1 0

at 0 0 -1
l

a 2 0 0 - 1

a 3 0 0 - 1

a 4 0 0 -1

m _ m

+3,1 gives roll to right.

+3,3 gives pitch nose down.

+4 gives yaw to left.

l
i

_x

g

i
-- ..J

Moment Contribution of Control System:

-CaC3,1

_M(12-34- 1234)_ A -- 2Jp/_ 0

0 _

+2 Jp/_

0

-2Sa

0

-CaC3, 3

0

2Sa

0

+CaS3,1

-SaS3,1

+ Sa $3, 3

-2 Ca

J

-CaS3, 3

-Ca $3,1

0

(Eq. G. 2. 10)
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The equation _rktten in terms

of input conSrol v_rizbles is

0 so_S'Y_

I 0

+Z jp[_ -2So_

c_S'Y S

caC_3 1_Ca
0

2 S_ -C_ S__ i

c_S_ I

(-_q. G. Z. Xl')
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Six Controller System (56-34-12)

Description of System: Six SDF Controllers are mounted

in positions 1, 2, 3, 4, 5, and 6.

Control Logic:

a 1 -1 "

a2 - 1

a3 0

a4 i 0

a5 0

L--%] -J

+_5 gives roll to right

+_3 gives pitch nose down

+_ gives yaw left

0 0

0 0

0 -1

0 -1

+1 0

4-! 0

L

7x

i rTy

7z

Moment Contribution of ControY System:

.Ca 5 0

0 -Ca 3

0 0

+2Jp_

m

0 ÷S_ 1

0

S_ 5

0

I

0 i
I
I
!

-Ca d

-S_ 5

m i

| •

I

'Ty

_z
D

P

q

r

(Eq. G. 2. 12)
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The equation written in terms of control system input variables
is

_M( )J °56-34-12 A = 2Jp_

-Ca 5 0 0

0 + Ca 3 0

0 C_ I

i

c_5

_3

+2Jp_

0

-So_ I

+Sot 3

Sa 1

0

+ Sa 5

-Sot 3

-So_ 5

0

p!
ql

(Eq. G. 2. 13)
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Three Controller Orthogonal System (5-3- 1)

Description of System: System consists of SDF Controllers

Numbers 1, 3, and 5.

Control Logic: None required since system has

only three degrees of freedom and

control system input matrix can be

nearly diagonalized by arrangement.

+a 5 gives roll to right.
f

+_3 gives pitch nose down.

÷a 1 gives yaw to left.

Moment Contribution of Control System:

-- Jp/_M(5-3-1 A

-Sa 5

-Sa 3

+ Ca 3

0

0

-S_ 1

+Cc_
1

D m

_5

a3

m

+Jp_

0

(-Sal- C_5)

(Cal+Sa _

m

al ÷ C_5)

0

<C_ l-Sa3_

(-Sa 5+ Ca3_

0

a

P

q

r

(Eq. G. 2. 14)
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Two Controller Yaw System

M(0-0-12 A = 2Jp_ -pSa 1

_IC_I

Logic

°_i = a2

+&l gives yaw to
left

(Eq. G. 2. 17)

Two Controller Pitch System (0-34-0)

O

0)_ = 2Jp_M(0-34-0 A

Logic

a3 = a4

+6 3 gives pitch
nose- down

(Eq. G. 2. 18)

Two Controller Roll System (56-0-0)

0M(56_0_0)J A 2Jp_

O

-o_5Ca 5

-r S_ 5

q Sa 5

Logic

_5 = _6

*4 5 = gives roll to
right

(Eq. G. 2. 19)
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MIT "VerticaiVee" (0-0-9_i0)

Description of System: System consists of two SDF Controllers.

Control Logic: None proposed since system is to

be used as passive control system.

_M(0- )J •0-9,10 A=JP/_

0 0 0

o ,<oo-o_) +_(oo+o_o)
D J

0

_9

S(a0-a9)-S_a 0 4ai0)

-c(%-_)-c(% ÷_io)

_ooo_>_oo_o_o)<oooo),<ooo_o:i
0 0 l

]
0 0 ;

J

(Eq. G. 2. 20)

_p

q

r
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Four Controller Sun Pointing System (0-34-12)

Description of System: Six Controller system without

Controllers Number 5 and 6.

_M(0- )J •34-12 A = 2Jp/_

0 0 0

0 -Ca 3 0

0 0 -C_ 1

0

Y

Z

+2Jp/_

0

-Sa I

Sa 3

°

Sa I -Sa 3

0 0

0 0

m

P

q

(Eq. G. 2.21)

Logic

O

_2

_3

_4
B

0

0

0

0

-i

-i

0

0

0

0

+i

+I

[:y]O
(Eq. G. 2. 22)
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Three Orthogonal Inertia Wheels (Not a Gyro System)

Control Logic: None required because system has three

degrees of freedom and control system

input matrix can be diagonalized by inspec-

tion.

_M3 wheelsJA = Jp

m

1 0 0

0 1 0

0 0 1
-

@0

+Jp

7- 0 4133 - 2

- 3 0 q-/_l

"+132 - l 0

P

I

ql
I

(Eq. G. 2.23)
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